OFFSET
1,5
LINKS
Seiichi Manyama, Antidiagonals n = 1..50, flattened
FORMULA
T(n,k) = (1/k!)*Sum_{i_1=1..n} Sum_{i_2=1..n} ... Sum_{i_k=1..n} multinomial(i_1+i_2+...+i_k; i_1, i_2, ..., i_k).
T(n,k) = (1/k!)*Sum_{m=k..k*n} m! [x^m](e^x Gamma(n+1,x)/Gamma(n+1)-1)^k. Here [x^m]f(x) is the coefficient of x^m in the series expansion of f(x). - Peter Luschny, Apr 26 2011
EXAMPLE
Array begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 2, 7, 37, 266, 2431, 27007, ...
1, 3, 31, 842, 45296, 4061871, 546809243, ...
1, 4, 121, 18252, 7958726, 7528988476, 13130817809439, ...
1, 5, 456, 405408, 1495388159, 15467641899285, 361207016885536095, ...
1, 6, 1709, 9268549, 295887993624, 34155922905682979, 10893033763705794846727, ...
...
MAPLE
b := proc(n, i, k) local r;
option remember;
if n = i then 1;
elif i < n then 0;
elif n < 1 then 0;
else add( binomial(i-1, r)*b(n-1, i-1-r, k), r=0..k);
end if;
end proc;
T:=proc(n, k); add(b(n, i, k), i=0..(k+1)*n); end proc;
# Peter Luschny, Apr 26 2011
A144510 := proc(n, k) local m;
add(m!*coeff(expand((exp(x)*GAMMA(n+1, x)/GAMMA(n+1)-1)^k), x, m), m=k..k*n)/k! end: for row from 1 to 6 do seq(A144510(row, col), col = 0..5) od;
MATHEMATICA
multinomial[n_, k_List] := n!/Times @@ (k!); t[n_, k_] := Module[{i, ik}, ik = Array[i, k]; 1/k!* Sum[multinomial[Total[ik], ik], Evaluate[Sequence @@ Thread[{ik, 1, n}]]]]; Table[t[n-k, k], {n, 1, 10}, {k, n-1, 0, -1}] // Flatten (* Jean-François Alcover, Jan 14 2014 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
David Applegate and N. J. A. Sloane, Dec 15 2008, Jan 30 2009
STATUS
approved