login
This site is supported by donations to The OEIS Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A144461 A triangle sequence of determinants: a(n)=A000045(n); t(n,m)=a(m)*(a(n) + 1) - If[ m < n, Round[(a(m) - 1)/a(n) + 1], a(n) + 1]*a(n). 0
0, 0, 1, 0, 1, 1, -3, 1, 1, 5, -5, 1, 1, 7, 13, -8, 1, 1, 10, 19, 29, -13, 1, 1, 15, 29, 57, 86, -21, 1, 1, 23, 45, 89, 155, 244, -34, 1, 1, 36, 71, 141, 246, 421, 667, -55, 1, 1, 57, 113, 225, 393, 673, 1121, 1794 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,7

COMMENTS

Row sums are:{0, 1, 2, 4, 17, 52, 176, 537, 1550, 4323}.

LINKS

Table of n, a(n) for n=1..55.

FORMULA

a(n)=A000045(n)+1;b(n)=A000045(n+1)-1; t(n,m)=a(m)*(a(n) + 1) - If[ m < n, Round[(a(m) - 1)/a(n) + 1], a(n) + 1]*a(n).

EXAMPLE

{0},

{0, 1},

{0, 1, 1},

{-3, 1, 1, 5},

{-5, 1, 1, 7, 13},

{-8, 1, 1, 10, 19, 29},

{-13, 1, 1, 15, 29, 57, 86},

{-21,1, 1, 23, 45, 89, 155, 244},

{-34, 1, 1, 36, 71, 141, 246, 421, 667},

{-55, 1, 1, 57, 113, 225, 393, 673, 1121, 1794}

MATHEMATICA

Clear[a, b, t, n, m] a[n_] := Fibonacci[n] + 1; t[n_, m_] := a[m]*(a[n] + 1) - If[ m < n, Round[(a[m] - 1)/a[n] + 1], a[n] + 1]*a[n]; Table[Table[t[n, m], {m, 0, n - 1}], {n, 1, 10}]; Flatten[%]

CROSSREFS

Cf. A000045.

Sequence in context: A008288 A238339 A302997 * A106597 A108359 A100936

Adjacent sequences:  A144458 A144459 A144460 * A144462 A144463 A144464

KEYWORD

uned,sign

AUTHOR

Roger L. Bagula and Gary W. Adamson, Oct 08 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 15 20:47 EST 2019. Contains 319184 sequences. (Running on oeis4.)