%I #14 Mar 07 2022 02:05:53
%S 16,160,16,832,1360,224,2800,3712,176,5920,7216,320,10192,11872,1520,
%T 15616,17680,736,22192,24640,336,29920,32752,3968,38800,42016,560,
%U 48832,52432,2080,60016,64000,7568,72352,76720,3008,85840,90592,3536,100480,105616
%N a(n) = A061039(8*n+5).
%C Numerators of 16*(n+1)*(4*n+1)/(9*(8*n+5)^2), so all numbers are multiples of 16 because the denominator is always odd.
%C Interpreted modulo 9, all numbers from 1 to 8 appear: a(20) is the first entry = 3 (mod 9), a(26) is the first entry = 2 (mod 9), a(80) is the first entry = 6 (mod 9).
%H Colin Barker, <a href="/A144453/b144453.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_81">Index entries for linear recurrences with constant coefficients</a>, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1).
%F a(n) = A061039(8*n+5).
%F a(n) = 3*a(n-27) - 3*a(n-54) + a(n-81) for n>83. - _Colin Barker_, Oct 10 2016
%t Numerator[1/9 - 1/(8*Range[0,100] +5)^2] (* _G. C. Greubel_, Mar 07 2022 *)
%o (Sage) [numerator(1/9 - 1/(8*n+5)^2) for n in (0..100)] # _G. C. Greubel_, Mar 07 2022
%Y Cf. A020806, A141425, A146537.
%K nonn,easy
%O 0,1
%A _Paul Curtz_, Oct 07 2008
%E Edited and extended by _R. J. Mathar_, Oct 24 2008