OFFSET
1,5
COMMENTS
Row sums are {1, 2, 4, 6, 9, 18, 33, 56, 101, 186, 341, ...}.
The actual rational numbers are:
{1},
{1, 1},
{1, 3/2, 1},
{1, 2, 2, 1},
{1, 5/2, 10/3, 5/2, 1},
{1, 3, 5, 5, 3, 1},
{1, 7/2, 7, 35/4, 7, 7/2, 1},
{1, 4, 28/3, 14, 14, 28/3, 4, 1},
{1, 9/2, 12, 21, 126/5, 21, 12, 9/2, 1},
{1, 5, 15, 30, 42, 42, 30, 15, 5, 1},
{1, 11/2, 55/3, 165/4, 66, 77, 66, 165/4, 55/3, 11/2, 1}
...
FORMULA
Phi=-(1 - Sqrt[5])/2; b(n)=b(n-1)+phi; a(n)=b(n)*a(n-1); t(n,m) = Round(Phi*a(n)/(a(m)*a(n-m))). - corrected by Joshua Swanson, Sep 16 2016
Empirically, t(n,m)=Round[(1/(m+1))*Binomial[n+1, m]]. - Joshua Swanson, Sep 16 2016
EXAMPLE
Triangle begins:
{1},
{1, 1},
{1, 2, 1},
{1, 2, 2, 1},
{1, 2, 3, 2, 1},
{1, 3, 5, 5, 3, 1},
{1, 4, 7, 9, 7, 4, 1},
{1, 4, 9, 14, 14, 9, 4, 1},
{1, 4, 12, 21, 25, 21, 12, 4, 1},
{1, 5, 15, 30, 42, 42, 30, 15, 5, 1},
{1, 6, 18, 41, 66, 77, 66, 41, 18, 6, 1}
...
MATHEMATICA
Clear[a, n, b, c] (* generalized Beta integer factorial of the golden mean*);
b[0] = -(1 - Sqrt[5])/2; b[n_] := b[n] = b[n - 1] - (1 - Sqrt[5])/2;
a[0] = -(1 - Sqrt[5])/2; a[n_] := a[n] = b[n]*a[n - 1]; (* combinations based on the gen-beta -factorials*)
c = Table[Table[FullSimplify[ExpandAll[((-1 + Sqrt[5])/2)*a[n]/(a[m]*a[n - m])]], {m, 0, n}], {n, 0, 10}];
Round[Flatten[c]]
(* edited by Joshua Swanson, Sep 16 2016 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula and Gary W. Adamson, Oct 04 2008
EXTENSIONS
Name corrected by Joshua Swanson, Sep 16 2016
STATUS
approved