login
A144421
Primes of the form (p(n)+p(n+1)+p(n+2))/7, where p(n)=n-th prime.
0
7, 41, 43, 47, 53, 83, 97, 107, 157, 167, 211, 251, 293, 353, 367, 401, 617, 683, 727, 839, 857, 859, 953, 1109, 1117, 1277, 1297, 1381, 1429, 1481, 1483, 1553, 1597, 1867, 1951, 1999, 2087, 2213, 2243, 2297, 2389, 2423, 2447, 2473, 2657, 2659, 2671, 2719
OFFSET
1,1
EXAMPLE
If n=6, then (p(6)+p(6+1)+p(6+2))/7=(13+17+33)/7=7=a(1).
If n=24, then (p(24)+p(24+1)+p(24+2))/7=(89+97+101)/7=41=a(2).
If n=25, then (p(25)+p(25+1)+p(25+2))/7=(97+101+103)/7=43=a(3).
If n=30, then (p(30)+p(30+1)+p(30+2))/7=(113+127+131)/7=53=a(4).
If n=43, then (p(43)+p(43+1)+p(43+2))/7=(191+193+197)/7=83=a(5).
If n=48, then (p(48)+p(48+1)+p(48+2))/7=(223+227+229)/7=97=a(6).
If n=53, then (p(53)+p(53+1)+p(53+2))/7=(241+251+257)/7=107=a(7), etc.
CROSSREFS
Cf. A000040.
Sequence in context: A223416 A165397 A123747 * A023251 A073501 A080666
KEYWORD
nonn
AUTHOR
EXTENSIONS
Corrected and extended by R. J. Mathar, Oct 10 2008
STATUS
approved