login
A144395
A designed polynomial set that gives a {1,6,1} quadratic and gives a symmetrical triangle of coefficients: p(x,n)=If[n == 2, 1, ((x + 1)^n -If[n == 0, 1, x^n + (n - 1)*x^(n - 1) + (n - 1)*x + 1])/x],.
0
1, 1, 1, 1, 6, 1, 1, 10, 10, 1, 1, 15, 20, 15, 1, 1, 21, 35, 35, 21, 1, 1, 28, 56, 70, 56, 28, 1, 1, 36, 84, 126, 126, 84, 36, 1, 1, 45, 120, 210, 252, 210, 120, 45, 1, 1, 55, 165, 330, 462, 462, 330, 165, 55, 1, 1, 66, 220, 495, 792, 924, 792, 495, 220, 66, 1
OFFSET
1,5
COMMENTS
Row sums are:{1, 2, 8, 22, 52, 114, 240, 494, 1004, 2026, 4072}.
FORMULA
p(x,n)=If[n == 2, 1, ((x + 1)^n -If[n == 0, 1, x^n + (n - 1)*x^(n - 1) + (n - 1)*x + 1])/x]; t(n,m)=coefficients(p(x,n)).
EXAMPLE
{1},
{1, 1},
{1, 6, 1},
{1, 10, 10, 1},
{1, 15, 20, 15, 1},
{1, 21, 35, 35, 21, 1},
{1, 28, 56, 70, 56, 28, 1},
{1, 36, 84, 126, 126, 84, 36, 1},
{1, 45, 120, 210, 252, 210, 120, 45, 1},
{1, 55, 165, 330, 462, 462, 330, 165, 55, 1},
{1, 66, 220, 495, 792, 924, 792, 495, 220, 66, 1}
MATHEMATICA
Clear[p, x, n] p[x_, n_] = If[ n == 2, 1, ((x + 1)^n - If[n == 0, 1, x^n + (n - 1)*x^(n - 1) + (n - 1)*x + 1])/x]; Table[ExpandAll[p[x, n]], {n, 2, 12}]; Table[CoefficientList[p[x, n], x], {n, 2, 12}]; Flatten[%]
CROSSREFS
Sequence in context: A176151 A204001 A363291 * A046621 A046617 A131063
KEYWORD
nonn,uned
AUTHOR
STATUS
approved