

A144335


Row sums of triangle A144334, binomial transform of [1, 2, 6, 7, 3, 0, 0, 0,...]


1



1, 3, 11, 32, 76, 156, 288, 491, 787, 1201, 1761, 2498, 3446, 4642, 6126, 7941, 10133, 12751, 15847, 19476, 23696, 28568, 34156, 40527, 47751, 55901, 65053, 75286, 86682, 99326, 113306, 128713, 145641, 164187, 184451, 206536, 230548, 256596
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


LINKS

Table of n, a(n) for n=1..38.
Index entries for linear recurrences with constant coefficients, signature (5, 10, 10, 5, 1).


FORMULA

G.f.: (12x+6x^23x^3+x^4)x/(1x)^5. a(n) = 1 5n/12 +3n^2/8 n^3/12 +n^4/8. [From R. J. Mathar, Sep 18 2008]


EXAMPLE

a(5) = 76 = (1, 4, 6, 4, 1) dot (1, 2, 6, 3, 7) = (1 + 8 + 36, + 28 + 3).
a(3) = 11 = sum of row 3 terms of triangle A144334: (4 + 3 + 4).


MATHEMATICA

Table[15n/12+3n^2/8n^3/12+n^4/8, {n, 40}] (* or *) LinearRecurrence[{5, 10, 10, 5, 1}, {1, 3, 11, 32, 76}, 40] (* Harvey P. Dale, Aug 22 2016 *)


CROSSREFS

A144334
Sequence in context: A319335 A104079 A089620 * A202091 A120844 A110958
Adjacent sequences: A144332 A144333 A144334 * A144336 A144337 A144338


KEYWORD

nonn


AUTHOR

Gary W. Adamson, Sep 18 2008


EXTENSIONS

Extended by R. J. Mathar, Sep 18 2008


STATUS

approved



