login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A144287 Square array A(n,k), n>=1, k>=1, read by antidiagonals: A(n,k) = Fibonacci rabbit sequence number n coded in base k. 12
1, 1, 1, 1, 2, 2, 1, 3, 5, 3, 1, 4, 10, 22, 5, 1, 5, 17, 93, 181, 8, 1, 6, 26, 276, 2521, 5814, 13, 1, 7, 37, 655, 17681, 612696, 1488565, 21, 1, 8, 50, 1338, 81901, 18105620, 4019900977, 12194330294, 34, 1, 9, 65, 2457, 289045, 255941280, 1186569930001, 6409020585966267, 25573364166211253, 55 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,5

LINKS

Alois P. Heinz, Antidiagonals n = 1..16, flattened

H. W. Gould, J. B. Kim and V. E. Hoggatt, Jr., Sequences associated with t-ary coding of Fibonacci's rabbits, Fib. Quart., 15 (1977), 311-318.

FORMULA

See program.

EXAMPLE

Square array begins:

  1,   1,    1,     1,     1,  ...

  1,   2,    3,     4,     5,  ...

  2,   5,   10,    17,    26,  ...

  3,  22,   93,   276,   655,  ...

  5, 181, 2521, 17681, 81901,  ...

MAPLE

f:= proc(n, b) option remember; `if`(n<2, [n, n], [f(n-1, b)[1]*

       b^f(n-1, b)[2] +f(n-2, b)[1], f(n-1, b)[2] +f(n-2, b)[2]])

    end:

A:= (n, k)-> f(n, k)[1]:

seq(seq(A(n, 1+d-n), n=1..d), d=1..11);

MATHEMATICA

f[n_, b_] := f[n, b] = If[n < 2, {n, n}, {f[n-1, b][[1]]*b^f[n-1, b][[2]] + f[n-2, b][[1]], f[n-1, b][[2]] + f[n-2, b][[2]]}]; t[n_, k_] := f[n, k][[1]]; Flatten[ Table[t[n, 1+d-n], {d, 1, 11}, {n, 1, d}]] (* Jean-Fran├žois Alcover, translated from Maple, Dec 09 2011 *)

CROSSREFS

Columns k=1-10 give: A000045, A005203, A005205, A320986, A320987, A320988, A320989, A320990, A320991, A061107 and A036299.

Rows n=1-3 give: A000012, A001477, A002522.

Main diagonal gives A144288.

Sequence in context: A106179 A081572 A292630 * A106196 A037027 A182810

Adjacent sequences:  A144284 A144285 A144286 * A144288 A144289 A144290

KEYWORD

base,nice,nonn,tabl

AUTHOR

Alois P. Heinz, Sep 17 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 27 05:37 EST 2021. Contains 341649 sequences. (Running on oeis4.)