%I
%S 1,2,0,3,1,0,4,2,1,0,5,3,2,1,0,6,4,3,2,1,0,7,5,4,3,2,1,0,8,6,5,4,3,2,
%T 1,0,9,7,6,5,4,3,2,1,0,10,8,7,6,5,4,3,2,1,0,11,9,8,7,6,5,4,3,2,1,0,12,
%U 10,9,8,7,6,5,4,3,2,1,0,13,11,10,9,8,7,6,5,4,3,2,1,0,14,12,11,10,9,8,7,6,5
%N Weight array of A086270.
%C For the definition of weight array, see A144112.
%C Contribution from _Gary W. Adamson_, Feb 18 2010: (Start)
%C Identical to an infinite lower triangular matrix with (1,2,3,...) in every
%C column but the leftmost column shifted one row upwards, giving:
%C 1;
%C 2, 0;
%C 3, 1, 0;
%C 4, 2, 1, 0;
%C 5, 3, 2, 1, 0;
%C ...
%C Let the triangle = M. Row sums = A000124; M * [1,2,3,...] = A050407
%C starting with offset 3: (1, 2, 5, 11, 21, 36,...); and Lim_{n>inf} M^n =
%C the odd indexed Fibonacci numbers, A001519: (1, 2, 5, 13,...). (End)
%F Row 1 = A000027. All subsequent rows are 0 followed by A000027.
%e Northwest corner:
%e 1 2 3 4 5 6 7 8 9
%e 0 1 2 3 4 5 6 7 8
%e 0 1 2 3 4 5 6 7 8
%e 0 1 2 3 4 5 6 7 8
%e 0 1 2 3 4 5 6 7 8
%Y Cf. A086270.
%Y Cf. A000124, A050407, A001519 [From _Gary W. Adamson_, Feb 18 2010]
%K nonn,tabl
%O 1,2
%A _Clark Kimberling_, Sep 16 2008
