%I #17 Jun 16 2017 02:53:01
%S 1,3,6,25,8,6,6,25,512,18,5,1024,3,36,18,125,6,1280,6,3645,16,21,6,
%T 200,512,36,512,4374,5,16,0,18,14,8,3,1990656,1,6,36,18,1,54,5,256,
%U 384,10,8,3,7776,16,18,93312,9,147,30,256,24,6,200,9,18,200,1,18,108
%N Bases and exponents in the prime decomposition of n replaced by digits of the Gregorian calendar with these indices.
%C Start from the prime decomposition of n, not writing down exponents which equal 1. That is the list 1, 2, 3, 2^2, 5, 2*3, 7, 2^3, 3^2, 2*5, 11, 2^3*3, 13, 2*7, 3*5, 2^4, 17, 2*3^2, ... Replace each number i in this representation by the i-th digit in the Gregorian Calendar 1(365(28 Feb)), 2(365(28 Feb)), 3(365(28 Feb)), 4(366(29 Feb)), 5(365(28 Feb)), ... This generates the sequence of a(n), namely 1, 3, 6, 5^2, 8, 2*3, 6, 5^2, 8^3, 3*6, 5, 2^8*4, 3, 6*6, 2*9, 5^3, 6, 5*2^8, ...
%H <a href="/index/Ca#calendar">Index entries for sequences related to calendars</a>
%e 5*2^9 = 2560 = a(18),
%e 6 = a(19),
%e 3^6*5 = 3645 = a(20),
%e 2*8 = 16 = a(21),
%e 7*3 = 21 = a(22),
%e 6 = a(23),
%e 5^2*8 = 200 = a(24),
%e etc.
%Y Cf. A000040, A141569.
%K nonn,base,less,dumb
%O 1,2
%A _Juri-Stepan Gerasimov_, Nov 25 2008