%I #2 Mar 30 2012 17:25:32
%S 1,1,1,3,1,1,9,5,3,3,11,15,11,9,9,17,17,21,17,11,11,35,43,43,47,35,17,
%T 17,57,73,81,81,93,57,35,35,91,75,91,99,99,135,91,57,57,161,161,145,
%U 161,185,185,229,161,91,91,275,243,243,227,275,347,347,415,275,161,161
%N Triangle read by rows, A144182 * A000012
%C Left border = A144181: (1, 1, 3, 9, 11, 17, 35,...) = INVERT transform of A118434. Right border = A144181 shifted.
%F Triangle read by rows, A144182 * A000012; (equivalent to taking partial row sums
%F of A144182 starting from the right). A000012 = an infinite lower triangular matrix with all 1's and the rest zeros.
%e First few rows of the triangle =
%e 1;
%e 1, 1;
%e 3, 1, 1;
%e 9, 5, 3, 3;
%e 11, 15, 11, 9, 9;
%e 17, 17, 21, 17, 11, 11;
%e 35, 43, 43, 47, 35, 17, 17;
%e 57, 73, 81, 81, 93, 57, 35, 35;
%e 91, 75, 91, 99, 99, 135, 91, 57, 57;
%e ...
%e Row 3 = (9, 5, 3, 3) = partial sums from the right of row 3, triangle A144182: (4, 2, 0, 3).
%Y A144182, Cf. A144181, A118434
%K nonn,tabl
%O 0,4
%A _Gary W. Adamson_, Sep 13 2008