login
Eigentriangle, row sums = A011782: (1, 1, 2, 4, 8, 16, ...).
2

%I #4 Feb 08 2022 23:37:36

%S 1,0,1,1,0,1,1,1,0,2,2,1,1,0,4,3,2,1,2,0,8,5,3,2,2,4,0,16,8,5,3,4,4,8,

%T 0,32,13,8,5,6,8,8,16,0,64

%N Eigentriangle, row sums = A011782: (1, 1, 2, 4, 8, 16, ...).

%C Row sums = A011782: (1, 1, 2, 4, 8, 16, ...).

%C Left border = A144157: (1, 0, 1, 1, 2, 3, 5, 8, ...).

%C Sum of n-th row terms = rightmost term of next row.

%F Triangle read by rows, A * B. A = an infinite lower triangular decrescendo subsequences triangle with A144157: (1, 0, 1, 1, 2, 3, 5, 8, ...) in every column; and B = (A011782 * 0^(n-k)), 0 <= k <= n = (1; 0,1; 0,0,2; 0,0,0,4; 0,0,0,0,8; ...).

%e First few rows of the triangle:

%e 1;

%e 0, 1;

%e 1, 0, 1;

%e 1, 1, 0, 2;

%e 2, 1, 1, 0, 4;

%e 3, 2, 1, 2, 0, 8;

%e 5, 3, 2, 2, 4, 0, 16;

%e 8, 5, 3, 4, 4, 8, 0, 32;

%e 13, 8, 5, 6, 8, 8, 16, 0, 64;

%e ...

%e Row 5 = (3, 2, 1, 2, 0, 8) = termwise product of (3, 2, 1, 1, 0, 1) and (1, 1, 1, 2, 4, 8) = (3*1, 2*1, 1*1, 1*2, 0*4, 1*8).

%K nonn,tabl

%O 0,10

%A _Gary W. Adamson_, Sep 12 2008