%I #4 Feb 08 2022 23:37:36
%S 1,0,1,1,0,1,1,1,0,2,2,1,1,0,4,3,2,1,2,0,8,5,3,2,2,4,0,16,8,5,3,4,4,8,
%T 0,32,13,8,5,6,8,8,16,0,64
%N Eigentriangle, row sums = A011782: (1, 1, 2, 4, 8, 16, ...).
%C Row sums = A011782: (1, 1, 2, 4, 8, 16, ...).
%C Left border = A144157: (1, 0, 1, 1, 2, 3, 5, 8, ...).
%C Sum of n-th row terms = rightmost term of next row.
%F Triangle read by rows, A * B. A = an infinite lower triangular decrescendo subsequences triangle with A144157: (1, 0, 1, 1, 2, 3, 5, 8, ...) in every column; and B = (A011782 * 0^(n-k)), 0 <= k <= n = (1; 0,1; 0,0,2; 0,0,0,4; 0,0,0,0,8; ...).
%e First few rows of the triangle:
%e 1;
%e 0, 1;
%e 1, 0, 1;
%e 1, 1, 0, 2;
%e 2, 1, 1, 0, 4;
%e 3, 2, 1, 2, 0, 8;
%e 5, 3, 2, 2, 4, 0, 16;
%e 8, 5, 3, 4, 4, 8, 0, 32;
%e 13, 8, 5, 6, 8, 8, 16, 0, 64;
%e ...
%e Row 5 = (3, 2, 1, 2, 0, 8) = termwise product of (3, 2, 1, 1, 0, 1) and (1, 1, 1, 2, 4, 8) = (3*1, 2*1, 1*1, 1*2, 0*4, 1*8).
%K nonn,tabl
%O 0,10
%A _Gary W. Adamson_, Sep 12 2008