%I #6 Apr 20 2024 23:50:39
%S 1,1,2,3,3,1,8,8,2,2,21,21,5,3,2,55,55,13,8,3,1,144,144,34,21,8,2,2,
%T 377,377,89,55,21,5,3,1,987,987,233,144,55,13,8,2,2,2584,2584,610,377,
%U 144,34,21,5,3,2,6765,6765,1597,987,377,89,55,13,8,3,1,17711,17711,4181
%N Weight array W={w(i,j)} of the Wythoff difference array A080164.
%C In general, let w(i,j) be the weight of the unit square labeled by its northeast vertex (i,j) and for each (m,n), define
%C S(m,n) = Sum_{j=1..n} Sum_{i=1..m} w(i,j).
%C Then S(m,n) is the weight of the rectangle [0,m]x[0,n]. We call W the weight array of S and we call S the accumulation array of W. For the case at hand, S is the Wythoff difference array, A080164.
%F Row 1: 1 followed by A001906, except for initial 0.
%F Row n: A001519 (except for initial 1) if n is in 1+A001950.
%F Row n: A001906 (except for initial 0) if n is in 1+A000201.
%e S(2,4) = 1+1+3+8+2+3+8+21 = 47.
%Y Cf. A000045, A144112, A144148.
%K nonn,tabl
%O 1,3
%A _Clark Kimberling_, Sep 11 2008