login
Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is Euler transform of (j->j^k).
19

%I #36 Sep 23 2022 16:13:04

%S 1,1,1,1,1,2,1,1,3,3,1,1,5,6,5,1,1,9,14,13,7,1,1,17,36,40,24,11,1,1,

%T 33,98,136,101,48,15,1,1,65,276,490,477,266,86,22,1,1,129,794,1828,

%U 2411,1703,649,160,30,1,1,257,2316,6970,12729,11940,5746,1593,282,42,1,1,513

%N Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is Euler transform of (j->j^k).

%C In general, column k > 0 is asymptotic to (Gamma(k+2)*Zeta(k+2))^((1-2*Zeta(-k)) /(2*k+4)) * exp((k+2)/(k+1) * (Gamma(k+2)*Zeta(k+2))^(1/(k+2)) * n^((k+1)/(k+2)) + Zeta'(-k)) / (sqrt(2*Pi*(k+2)) * n^((k+3-2*Zeta(-k))/(2*k+4))). - _Vaclav Kotesovec_, Mar 01 2015

%H Alois P. Heinz, <a href="/A144048/b144048.txt">Antidiagonals = 0..99, flattened</a>

%H Vaclav Kotesovec, <a href="https://arxiv.org/abs/1509.08708">A method of finding the asymptotics of q-series based on the convolution of generating functions</a>, arXiv:1509.08708 [math.CO], Sep 30 2015, p. 21.

%H N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>

%F G.f. of column k: Product_{j>=1} 1/(1-x^j)^(j^k).

%e Square array begins:

%e 1, 1, 1, 1, 1, 1, ...

%e 1, 1, 1, 1, 1, 1, ...

%e 2, 3, 5, 9, 17, 33, ...

%e 3, 6, 14, 36, 98, 276, ...

%e 5, 13, 40, 136, 490, 1828, ...

%e 7, 24, 101, 477, 2411, 12729, ...

%p with(numtheory): etr:= proc(p) local b; b:= proc(n) option remember; `if`(n=0,1, add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n) end end: A:= (n,k)-> etr(j->j^k)(n); seq(seq(A(n,d-n), n=0..d), d=0..13);

%t etr[p_] := Module[{ b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d*p[d], {d, Divisors[j]}]*b[n - j], {j, 1, n}]/n]; b]; A[n_, k_] := etr[Function[j, j^k]][n]; Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 13}] // Flatten (* _Jean-François Alcover_, Dec 27 2013, translated from Maple *)

%Y Columns k=0-9 give: A000041, A000219, A023871, A023872, A023873, A023874, A023875, A023876, A023877, A023878.

%Y Rows give: 0-1: A000012, 2: A000051, A094373, 3: A001550, 4: A283456, 5: A283457.

%Y Main diagonal gives A252782.

%Y Cf. A283272.

%K nonn,tabl

%O 0,6

%A _Alois P. Heinz_, Sep 08 2008