login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A144018 Triangle T(n,k), n >= 1, 1 <= k <= n, read by rows, where sequence a_k of column k has a_k(0)=0, followed by (k+1)-fold 1 and a_k(n) shifts k places left under Euler transform. 11
1, 1, 1, 2, 1, 1, 4, 2, 1, 1, 9, 3, 2, 1, 1, 20, 6, 3, 2, 1, 1, 48, 10, 5, 3, 2, 1, 1, 115, 20, 8, 5, 3, 2, 1, 1, 286, 36, 14, 7, 5, 3, 2, 1, 1, 719, 72, 23, 12, 7, 5, 3, 2, 1, 1, 1842, 137, 40, 18, 11, 7, 5, 3, 2, 1, 1, 4766, 275, 69, 30, 16, 11, 7, 5, 3, 2, 1, 1, 12486, 541, 121, 47, 25, 15, 11, 7, 5, 3, 2, 1, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,4

LINKS

Alois P. Heinz, Rows n = 1..141, flattened

M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]

M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]

N. J. A. Sloane, Transforms

EXAMPLE

T(5,1) = ([1,2,4]*[1,1,4] + [1]*[1]*4 + [1,2]*[1,1]*2 + [1,3]*[1,2]*1)/4 = 36/4 = 9.

Triangle begins:

    1;

    1,  1;

    2,  1,  1;

    4,  2,  1,  1;

    9,  3,  2,  1, 1;

   20,  6,  3,  2, 1, 1;

   48, 10,  5,  3, 2, 1, 1;

  115, 20,  8,  5, 3, 2, 1, 1;

  286, 36, 14,  7, 5, 3, 2, 1, 1;

  719, 72, 23, 12, 7, 5, 3, 2, 1, 1;

MAPLE

etrk:= proc(p) proc(n, k) option remember; `if`(n=0, 1,

         add(add(d*p(d, k), d=numtheory[divisors](j))*

         procname(n-j, k), j=1..n)/n)

       end end:

B:= etrk(T):

T:= (n, k)-> `if`(n<=k, `if`(n=0, 0, 1), B(n-k, k)):

seq(seq(T(n, k), k=1..n), n=1..14);

MATHEMATICA

etrk[p_] := Module[{f}, f[n_, k_] := f[n, k] = If[n == 0, 1, (Sum[Sum[d*p[d, k], {d, Divisors[j]}]*f[n-j, k], {j, 1, n-1}] + Sum[d*p[d, k], {d, Divisors[n]}])/n]; f]; b = etrk[t]; t[n_, k_] := If[n <= k, If[n == 0, 0, 1], b[n-k, k]]; Table[t[n, k], {n, 1, 13}, {k, 1, n}] // Flatten (* Jean-François Alcover, Aug 01 2013, after Alois P. Heinz *)

CROSSREFS

Columns k=1..10 give A000081, A007562, A218020, A218021, A218022, A218023, A218024, A218025, A218026, A218027.

T(2n,n) gives A000041(n).

Cf. A316074.

Sequence in context: A278984 A111579 A144374 * A258709 A239144 A325528

Adjacent sequences:  A144015 A144016 A144017 * A144019 A144020 A144021

KEYWORD

eigen,nonn,tabl

AUTHOR

Alois P. Heinz, Sep 07 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 26 04:46 EDT 2019. Contains 323579 sequences. (Running on oeis4.)