login
A144002
E.g.f. A(x) satisfies: A(x) = 1 + Series_Reversion( Integral 1/A(x)^2 dx ).
4
1, 1, 2, 10, 88, 1152, 20448, 464608, 12998176, 435443328, 17106187520, 775347933312, 40025403691136, 2328514989726720, 151324140857050624, 10904257049278844416, 865717992565002800640, 75309304802558209263616, 7143418423952431605493760, 735668180680897524348745728
OFFSET
0,3
LINKS
FORMULA
E.g.f. A(x) satisfies: A'(x) = A(A(x) - 1)^2. - Paul D. Hanna, Nov 25 2014 [corrected by Paul D. Hanna, Sep 07 2024]
EXAMPLE
E.g.f.: A(x) = 1 + x + 2*x^2/2! + 10*x^3/3! + 88*x^4/4! + 1152*x^5/5! + ...
PROG
(PARI) {a(n) = my(A=1+x+x*O(x^n)); for(i=0, n, A = 1 + serreverse(intformal(1/A^2))); n!*polcoef(A, n)}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 07 2008
STATUS
approved