login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A143981 The number of unigraphical partitions of 2m; that is, the number of partitions of 2m which are realizable as the degree sequence of one and only one graph (where loops are not allowed but multiple edges are allowed). 0
1, 3, 6, 9, 15, 19, 26, 36, 46, 59, 80, 100, 128, 167, 211, 267, 341, 429, 541, 682, 850, 1063, 1327, 1647, 2035, 2520, 3100, 3810, 4669, 5708, 6955, 8468, 10267, 12441, 15026, 18120, 21788, 26175, 31355, 37510, 44769, 53362, 63460, 75384, 89348 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

REFERENCES

S. L. Hakimi, On realizability of a set of integers as degrees of the vertices of a linear graph. I, J. Soc. Indust. Appl. Math., vol. 10 (1962), 496-506

S. L. Hakimi, On realizability of a set of integers as degrees of the vertices of a linear graph. II. Uniqueness, J. Soc. Indust. Appl. Math., vol. 11 (1963), 135-147

LINKS

Table of n, a(n) for n=1..45.

FORMULA

For m >= 3, a(2m) = A000041(m) + A001399(m-3) + A000005(m+1) + A083039(m-2) + m - 5

EXAMPLE

For m = 4, the number of unigraphical partitions is A000041(4) + A001399(1) + A000005(5) + A083039(2) + 4 - 5 = 5 + 1 + 2 + 2 + 4 - 5 = 9.

MAPLE

with(combinat): with(numtheory): a:=proc(m) it:=round(m^2/12)+numbpart(m)+tau(m+1)+m-5: if m mod 6 = 0 then it:=it+2 fi: if m mod 6 = 1 then it:=it+1 fi: if m mod 6 = 2 then it:=it+3 fi: if m mod 6 = 3 then it:=it+1 fi: if m mod 6 = 4 then it:=it+2 fi: if m mod 6 = 5 then it:=it+2 fi: RETURN(it): end:

CROSSREFS

Sequence in context: A000741 A133205 A049991 * A031940 A007187 A082004

Adjacent sequences:  A143978 A143979 A143980 * A143982 A143983 A143984

KEYWORD

nonn

AUTHOR

Michael David Hirschhorn and James A. Sellers, Sep 06 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 20 06:06 EST 2018. Contains 317385 sequences. (Running on oeis4.)