This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A143981 The number of unigraphical partitions of 2m; that is, the number of partitions of 2m which are realizable as the degree sequence of one and only one graph (where loops are not allowed but multiple edges are allowed). 0
 1, 3, 6, 9, 15, 19, 26, 36, 46, 59, 80, 100, 128, 167, 211, 267, 341, 429, 541, 682, 850, 1063, 1327, 1647, 2035, 2520, 3100, 3810, 4669, 5708, 6955, 8468, 10267, 12441, 15026, 18120, 21788, 26175, 31355, 37510, 44769, 53362, 63460, 75384, 89348 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 REFERENCES S. L. Hakimi, On realizability of a set of integers as degrees of the vertices of a linear graph. I, J. Soc. Indust. Appl. Math., vol. 10 (1962), 496-506 S. L. Hakimi, On realizability of a set of integers as degrees of the vertices of a linear graph. II. Uniqueness, J. Soc. Indust. Appl. Math., vol. 11 (1963), 135-147 LINKS FORMULA For m >= 3, a(2m) = A000041(m) + A001399(m-3) + A000005(m+1) + A083039(m-2) + m - 5 EXAMPLE For m = 4, the number of unigraphical partitions is A000041(4) + A001399(1) + A000005(5) + A083039(2) + 4 - 5 = 5 + 1 + 2 + 2 + 4 - 5 = 9. MAPLE with(combinat): with(numtheory): a:=proc(m) it:=round(m^2/12)+numbpart(m)+tau(m+1)+m-5: if m mod 6 = 0 then it:=it+2 fi: if m mod 6 = 1 then it:=it+1 fi: if m mod 6 = 2 then it:=it+3 fi: if m mod 6 = 3 then it:=it+1 fi: if m mod 6 = 4 then it:=it+2 fi: if m mod 6 = 5 then it:=it+2 fi: RETURN(it): end: CROSSREFS Sequence in context: A000741 A133205 A049991 * A031940 A007187 A082004 Adjacent sequences:  A143978 A143979 A143980 * A143982 A143983 A143984 KEYWORD nonn AUTHOR Michael David Hirschhorn and James A. Sellers, Sep 06 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 20 06:06 EST 2018. Contains 317385 sequences. (Running on oeis4.)