login
A143917
G.f. A(x) satisfies: A(x) = 1/(1-x) + x^2*A(x)*A'(x).
3
1, 1, 2, 6, 25, 133, 851, 6313, 53061, 497493, 5144500, 58161126, 713789847, 9453038227, 134405493652, 2042529150110, 33045300698761, 567165849906233, 10294218618819268, 197022941365579804, 3966001076798967837
OFFSET
0,3
LINKS
FORMULA
a(n) ~ c * n!, where c = 1.81857005675331400362707139219522893237... (see A238214). - Vaclav Kotesovec, Feb 20 2014
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 6*x^3 + 25*x^4 + 133*x^5 + 851*x^6 +...
A'(x) = 1 + 4*x + 18*x^2 + 100*x^3 + 665*x^4 + 5106*x^5 +...
A(x)*A'(x) = 1 + 5*x + 24*x^2 + 132*x^3 + 850*x^4 + 6312*x^5 +...
MATHEMATICA
Clear[a]; a[0] = 1; a[n_]/; n>=1 := a[n] = 1 + Sum[(k - 1) a[k - 1] a[n - k], {k, n}]; Table[a[n], {n, 0, 16}] (* David Callan, Jun 24 2013 *)
PROG
(PARI) {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=1/(1-x+x*O(x^n))+x^2*A*deriv(A)); polcoeff(A, n)}
CROSSREFS
Cf. A143916 (variant), A238214.
Sequence in context: A352436 A020112 A317022 * A009326 A001258 A247499
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 05 2008
STATUS
approved