Hello (again) SeqFan \& Math-fun,
Here are a few Kimberlike sequences computed by Gilles Sadowski (for $k=2$ to $k=10$; see a short explanation here),
Best,
É.
[$k=2$ is A026272]

 [Currently missing integers for $k=10$ after computation of sequence's first 5000 terms:

P. $-S$.

A short time after this post, Hugo P. replied to SeqFan (march 10th, 2006):
\qquad

I have every confidence that every n will appear in the sequence for any k, but no idea how you might prove it.
I knocked up a program to find where 2 would get inserted for various k :

k	n	used	shown	passed	seq
2	2	1	1	0	1
3	2	11	24	1	23
4	2	18	48	5	60
5	2	5	12	3	36
6	2	346	1384	14	1785
7	2	5725	26336	70	34759
8	2	9833	50715	180	69998
9	2	38238	217258	734	311739
10	2	33637	211951	1238	313806

For $k=3$, these mean that when the first 2 appeared there were 24 numbers to its left in the sequence ('shown'), and 23 numbers (or holes) already known to its right ('seq'); 11 different numbers appeared before the first 2 ('used'), and 1 number had been 'passed' (ie out of 1..13, one number has not yet been used).

For $k=10$, n in (1 . . 100), here are the 'used' values:
($\mathrm{n}=1 \ldots 10$) 03363717960954864723759713366987742
$(\mathrm{n}=11 . .20) \quad 949117271915816438352391922413120918$
$(\mathrm{n}=21 . .30) 67986 \quad 98032 \quad 6 \quad 825943899343316 \quad 78810442742940$
$(\mathrm{n}=31 \ldots 40) \quad 10 \quad 102548 \quad 80105 \quad 15 \quad 104550 \quad 52375 \quad 58202 \quad 96393 \quad 22 \quad 42760$
$(\mathrm{n}=41.50) \quad 48638 \quad 1166769197331428 \quad 8049818 \quad 2614$
$(\mathrm{n}=51 \ldots 60) 361292532831851626380 \quad 81768 \quad 38333120103525$
$(n=61 \ldots 70) 3795730080647039227438747 \quad 2398316 \quad 750753132$
$(\mathrm{n}=71 \ldots 80) \quad 34 \quad 38622 \quad 17 \quad 6713942371 \quad 96870 \quad 48 \quad 24 \quad 2591412$
($\mathrm{n}=81 \ldots 90$) $916527371446186 \quad 81232 \quad 27 \quad 30 \quad 2158 \quad 33$
$(\mathrm{n}=91 \ldots 100) 65989 \quad 9846265864 \quad 6366631 \quad 29 \quad 64 \quad 39 \quad 8223583836$
It took about 17 minutes to find them all; last to appear was 9:
$\begin{array}{rrrrrr}k & n & \text { used } & \text { shown } & \text { passed } & \text { seq } \\ 10 & 9 & 133669 & 840571 & 9207 & 1257313\end{array}$
and peak values of 'passed' and 'seq' (within the 100 results captured) appear at the previous number:
$\begin{array}{llllll}10 & 20 & 120918 & 764934 & 21958 & 1268672\end{array}$
Hope this helps,
Hugo

Thanks -- great job, Hugo!

