This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A143821 Decimal expansion of the constant 1/2! + 1/5! + 1/8! + ... = 0.50835 81599 84216 ... . 6
 5, 0, 8, 3, 5, 8, 1, 5, 9, 9, 8, 4, 2, 1, 6, 8, 6, 3, 5, 4, 2, 6, 9, 3, 9, 2, 6, 7, 1, 9, 9, 9, 0, 3, 6, 2, 3, 4, 3, 2, 3, 0, 2, 2, 6, 8, 6, 2, 5, 0, 3, 5, 9, 9, 0, 3, 5, 3, 3, 7, 1, 3, 9, 6, 1, 5, 4, 1, 1, 4, 4, 2, 7, 1, 9, 2, 6, 7, 9, 9, 3, 1, 8, 7, 6, 4, 7, 0, 2, 4, 0, 0, 9, 5, 4, 6, 5, 8, 2, 5 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Define a sequence of real numbers R(n) by R(n) := sum {k = 0..inf} (3k)^n/(3k)! for n = 0,1,2... . This constant is R(1); the decimal expansions of R(0) = 1 + 1/3!+ 1/6! + 1/9! + ... and R(2) - R(1) = 1/1! + 1/4! + 1/7! + ... may be found in A143819 and A143820. It is easy to verify that the sequence R(n) satisfies the recurrence relation u(n+3) = 3*u(n+2) - 2*u(n+1) + sum {i = 0..n} binomial(n,i) * 3^(n-i)*u(i). Hence R(n) is an integral linear combination of R(0), R(1) and R(2) and so also an integral linear combination of R(0), R(1) and R(2) - R(1). Some examples are given below. LINKS FORMULA Constant = (exp(1) + w*exp(w) + w^2*exp(w^2))/3, where w = exp(2*Pi*i/3). A143819 + A143820 + A143821 = exp(1). EXAMPLE R(n) as a linear combination of R(0),R(1) and R(2) - R(1). ======================================= ..R(n)..|.....R(0).....R(1)...R(2)-R(1) ======================================= ..R(3)..|.......1........1........3.... ..R(4)..|.......6........2........7.... ..R(5)..|......25.......11.......16.... ..R(6)..|......91.......66.......46.... ..R(7)..|.....322......352......203.... ..R(8)..|....1232.....1730.....1178.... ..R(9)..|....5672.....8233.....7242.... ..R(10).|...32202....39987....43786.... ... The column entries are from A143815, A143816 and A143817. MATHEMATICA RealDigits[ N[ -((Cos[Sqrt[3]/2] - E^(3/2) + Sqrt[3]*Sin[Sqrt[3]/2])/(3*Sqrt[E])), 105]][[1]] (* Jean-François Alcover, Nov 08 2012 *) CROSSREFS A073742, A073743, A143815, A143816, A143817, A143818, A143819, A143820. Sequence in context: A078119 A085998 A094886 * A099219 A201288 A011441 Adjacent sequences:  A143818 A143819 A143820 * A143822 A143823 A143824 KEYWORD cons,easy,nonn AUTHOR Peter Bala, Sep 03 2008 EXTENSIONS Offset corrected by R. J. Mathar, Feb 05 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Puzzles | Hot | Classics
Recent Additions | More pages | Superseeker | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .