login
A143777
Eigentriangle of triangle A022167.
1
1, 1, 1, 1, 4, 2, 1, 13, 26, 7, 1, 40, 260, 280, 47, 1, 121, 2420, 8470, 5687, 628
OFFSET
0,5
COMMENTS
Row sums of the triangle = A125813 shifted one place to the left = (1, 2, 7, 47, 628,...).
Row sums of row n terms = rightmost term of row (n+1).
Example: rightmost term of row 3 = 7 = (1 + 4 + 2).
Triangle A022167 =
1;
1, 1;
1, 4, 1;
1, 13, 13, 1;
1, 40, 130, 40, 1;
... The eigensequence of A022167 = A125815: (1, 1, 2, 7, 47, 628, 17327,...).
Triangle A143777 applies a termwise product of the first n terms of (1, 1, 2, 7, 47,...) and the (n-1)-th row terms of triangle A022167.
FORMULA
Triangle read by rows, A022167 * (A125813 * 0^(n-k)); 0<=k<=n
EXAMPLE
First few rows of the triangle are:
1;
1, 1;
1, 4, 2;
1, 13, 26, 7;
1, 40, 260, 280, 47;
1, 121, 2420, 8470, 5687, 628;
...
Row 3 = (1, 13, 26, 7) = termwise product of (1, 13, 13, 1) and (1, 1, 2, 7); where (1, 13, 13, 1) = row 3 of triangle A022167 and (1, 1, 2, 7) = the first 4 terms of A125813, the eigensequence of A022167.
CROSSREFS
Sequence in context: A109244 A171650 A225476 * A365566 A326659 A236830
KEYWORD
nonn,tabl,more
AUTHOR
Gary W. Adamson, Aug 31 2008
STATUS
approved