login
A143734
Number of paths of a generalized chess Queen from (0,0,0) to (n,n,n) in a cube, in which the Queen moves toward the goal point at each step.
1
1, 13, 638, 41476, 3015296, 232878412, 18691183682, 1540840801552, 129548309399618, 11057865563760844, 955237244106091682, 83324522236732005112, 7327068320498628273506, 648679579345635742189498, 57761885964038080406607410, 5169168679056263697679753150
OFFSET
0,2
COMMENTS
a(n) is the number of sequences whose terms are multiples of (0,0,1), (0,1,0), (1,0,0), (0,1,1), (1,0,1), (1,1,0), or (1,1,1) and whose sum is (n,n,n).
LINKS
Alois P. Heinz and Vaclav Kotesovec, Table of n, a(n) for n = 0..250 (first 81 terms from Alois P. Heinz)
FORMULA
q(1,1,1) = 1; q(1,1,2) = 1; q(1,2,1) = 1; q(1,1,2) = 1; q(i_,j,k) = Sum(q(x,j,k), {x,1,i-1}) + Sum(q(i,y,k), {y,1,j-1}] + Sum(q(i,j,z), {z,1,k-1}) + Sum(q(i-w,j-w,k), {w,1,Min(i,j)}) + Sum(q(i,j-w,k-w), {w,1,Min(j, k)}) + Sum(q(i-w,j,k-w), {w,1,Min(i,k)}) + Sum(q(i-w,j-w,k-w), {w,1,Min(i,j,k)}); a(n) = q(n,n,n).
a(n) ~ c * d^(3*n) / n, where d = 4.575760096729293131840036142861966071... is the root of the equation -8 - 11*d - 9*d^2 - 2*d^3 + d^4 = 0, and c = 0.14917103190900041974882341373298677... . - Vaclav Kotesovec, Aug 23 2014
EXAMPLE
a(1)=13 because there are 13 generalized Queen paths from (0,0,0) to (1,1,1).
MAPLE
b:= proc(x, y, z) option remember; `if`(x=0 and y=0 and z=0, 1,
add(b(x-i, y, z), i=1..x)+ add(b(x, y-i, z), i=1..y)+
add(b(x, y, z-i), i=1..z)+ add(b(x-i, y-i, z), i=1..min(x, y))+
add(b(x-i, y, z-i), i=1..min(x, z))+ add(b(x, y-i, z-i),
i=1..min(y, z))+ add(b(x-i, y-i, z-i), i=1..min(x, y, z)))
end:
a:= n-> b(n$3): seq(a(n), n=0..20); # Alois P. Heinz, Jul 23 2012
MATHEMATICA
q[1, 1, 1] = 1; q[1, 1, 2] = 1; q[1, 2, 1] = 1; q[1, 1, 2] = 1; q[i_, j_, k_] := q[i, j, k] = Sum[q[x, j, k], {x, 1, i - 1}] + Sum[q[i, y, k], {y, 1, j - 1}] + Sum[q[i, j, z], {z, 1, k - 1}] + Sum[q[i - w, j - w, k], {w, 1, Min[i, j]}] + Sum[q[i, j - w, k - w], {w, 1, Min[j, k]}] + Sum[q[i - w, j, k - w], {w, 1, Min[i, k]}] + Sum[q[i - w, j - w, k - w], {w, 1, Min[i, j, k]}]; a[n_] := q[n, n, n];
CROSSREFS
A132595 gives the two-dimensional version of this sequence.
Sequence in context: A362862 A351507 A067407 * A362898 A316331 A217380
KEYWORD
nonn
AUTHOR
Martin J. Erickson (erickson(AT)truman.edu), Aug 30 2008
STATUS
approved