This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A143642 Numerators of principal and intermediate convergents to 3^(1/2). 3
 1, 2, 3, 5, 7, 12, 19, 26, 45, 71, 97, 168, 265, 362, 627, 989, 1351, 2340, 3691, 5042, 8733, 13775, 18817, 32592, 51409, 70226, 121635, 191861, 262087, 453948, 716035, 978122, 1694157, 2672279, 3650401, 6322680, 9973081, 13623482, 23596563, 37220045 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 REFERENCES Serge Lang, Introduction to Diophantine Approximations, Addison-Wesley, New York, 1966. LINKS Colin Barker, Table of n, a(n) for n = 1..1000 Clark Kimberling, Best lower and upper approximates to irrational numbers, Elemente der Mathematik, 52 (1997) 122-126. Index entries for linear recurrences with constant coefficients, signature (0,0,4,0,0,-1). FORMULA From Colin Barker, Jul 28 2017: (Start) G.f.: x*(1 + x)*(1 + x + 2*x^2 - x^3) / (1 - 4*x^3 + x^6). a(n) = 4*a(n-3) - a(n-6) for n>6. (End) EXAMPLE The first few principal and intermediate convergents to 3^(1/2) are 1/1, 2/1, 3/2, 5/3, 7/4, 12/7, ... MATHEMATICA LinearRecurrence[{0, 0, 4, 0, 0, -1}, {1, 2, 3, 5, 7, 12}, 40] (* Harvey P. Dale, May 12 2018 *) PROG (PARI) Vec(x*(1 + x)*(1 + x + 2*x^2 - x^3) / (1 - 4*x^3 + x^6) + O(x^60)) \\ Colin Barker, Jul 28 2017 CROSSREFS Cf. A140827 (denominators). Sequence in context: A218021 A137713 A191385 * A192685 A293543 A060986 Adjacent sequences:  A143639 A143640 A143641 * A143643 A143644 A143645 KEYWORD nonn,frac,easy AUTHOR Clark Kimberling, Aug 27 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 26 05:25 EDT 2019. Contains 323579 sequences. (Running on oeis4.)