

A143619


Expansion of 1/(1  x^2  x^7  x^12 + x^14) (a Salem polynomial).


0



1, 0, 1, 0, 1, 0, 1, 1, 1, 2, 1, 3, 2, 4, 3, 5, 5, 6, 8, 9, 12, 13, 17, 19, 24, 28, 34, 41, 49, 59, 71, 86, 103, 124, 149, 179, 215, 259, 311, 375, 450, 542, 651, 784, 942, 1133, 1363, 1638, 1971, 2369, 2851, 3427, 4123, 4957, 5962, 7170, 8622, 10370, 12470, 14998, 18035, 21691, 26085, 31371
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,10


COMMENTS

Low growth rate of 1.20262... .The absolute values of the roots of the polynomial are 0.8315201041..., 1.2026167436..., and 1.0 (with multiplicity 12). The polynomial is selfreciprocal. [Joerg Arndt, Nov 03 2012]


LINKS

Table of n, a(n) for n=0..63.
Index entries for linear recurrences with constant coefficients, signature (0,1,0,0,0,0,1,0,0,0,0,1,0,1).


FORMULA

G.f.: 1/(x^14x^12x^7x^2+1). [Colin Barker, Nov 03 2012]


MATHEMATICA

f[x_] = 1  x^2  x^7  x^12 + x^14; g[x] = ExpandAll[x^14*f[1/x]]; a = Table[SeriesCoefficient[Series[1/g[x], {x, 0, 50}], n], {n, 0, 50}];


CROSSREFS

Sequence in context: A029142 A054685 A246581 * A029141 A257880 A240866
Adjacent sequences: A143616 A143617 A143618 * A143620 A143621 A143622


KEYWORD

nonn,easy


AUTHOR

Roger L. Bagula and Gary W. Adamson, Oct 26 2008


EXTENSIONS

New name from Colin Barker and Joerg Arndt, Nov 03 2012


STATUS

approved



