This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A143619 Expansion of 1/(1 - x^2 - x^7 - x^12 + x^14) (a Salem polynomial). 0
 1, 0, 1, 0, 1, 0, 1, 1, 1, 2, 1, 3, 2, 4, 3, 5, 5, 6, 8, 9, 12, 13, 17, 19, 24, 28, 34, 41, 49, 59, 71, 86, 103, 124, 149, 179, 215, 259, 311, 375, 450, 542, 651, 784, 942, 1133, 1363, 1638, 1971, 2369, 2851, 3427, 4123, 4957, 5962, 7170, 8622, 10370, 12470, 14998, 18035, 21691, 26085, 31371 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,10 COMMENTS Low growth rate of 1.20262... .The absolute values of the roots of the polynomial are 0.8315201041..., 1.2026167436..., and 1.0 (with multiplicity 12).  The polynomial is self-reciprocal. [Joerg Arndt, Nov 03 2012] LINKS Index entries for linear recurrences with constant coefficients, signature (0,1,0,0,0,0,1,0,0,0,0,1,0,-1). FORMULA G.f.: 1/(x^14-x^12-x^7-x^2+1). [Colin Barker, Nov 03 2012] MATHEMATICA f[x_] = 1 - x^2 - x^7 - x^12 + x^14; g[x] = ExpandAll[x^14*f[1/x]]; a = Table[SeriesCoefficient[Series[1/g[x], {x, 0, 50}], n], {n, 0, 50}]; CROSSREFS Sequence in context: A054685 A286220 A246581 * A029141 A257880 A240866 Adjacent sequences:  A143616 A143617 A143618 * A143620 A143621 A143622 KEYWORD nonn,easy AUTHOR Roger L. Bagula and Gary W. Adamson, Oct 26 2008 EXTENSIONS New name from Colin Barker and Joerg Arndt, Nov 03 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 24 04:10 EDT 2017. Contains 291052 sequences.