login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A143609 Numerators of the upper principal and intermediate convergents to 2^(1/2). 5
2, 3, 10, 17, 58, 99, 338, 577, 1970, 3363, 11482, 19601, 66922, 114243, 390050, 665857, 2273378, 3880899, 13250218, 22619537, 77227930, 131836323, 450117362, 768398401, 2623476242, 4478554083, 15290740090, 26102926097, 89120964298, 152139002499 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

The upper principal and intermediate convergents to 2^(1/2), beginning with

2/1, 3/2, 10/7, 17/12, 58/41, form a strictly decreasing sequence;

essentially, numerators=A143609 and denominators=A084068.

REFERENCES

Serge Lang, Introduction to Diophantine Approximations, Addison-Wesley, New York, 1966.

LINKS

Colin Barker, Table of n, a(n) for n = 1..1000

Creighton Kenneth Dement, Comments on A143608 and A143609

Clark Kimberling, Best lower and upper approximates to irrational numbers, Elemente der Mathematik, 52 (1997) 122-126.

Index entries for linear recurrences with constant coefficients, signature (0,6,0,-1).

FORMULA

a(n) = 6 * a(n-2) - a(n-4). a(2*n) = A001541(n) if n>0. a(2*n + 1) = 2 * A001653(n + 1).- Michael Somos, Sep 03 2013

G.f.: x * (2 + 3*x - 2*x^2 - x^3) / (1 - 6*x^2 + x^4). - Michael Somos, Sep 03 2013

a(n) = (2+sqrt(2)+(-1)^n*(-2+sqrt(2)))*((-1+sqrt(2))^n+(1+sqrt(2))^n)/(4*sqrt(2)). - Colin Barker, Mar 27 2016

EXAMPLE

2*x + 3*x^2 + 10*x^3 + 17*x^4 + 58*x^5 + 99*x^6 + 338*x^7 + 577*x^8 + ...

MATHEMATICA

Rest@ CoefficientList[Series[x (2 + 3 x - 2 x^2 - x^3)/(1 - 6 x^2 + x^4), {x, 0, 30}], x] (* Michael De Vlieger, Mar 27 2016 *)

PROG

(PARI) {a(n) = if( n<1, 0, polcoeff( x * (2 + 3*x - 2*x^2 - x^3) / (1 - 6*x^2 + x^4) + x * O(x^n), n))} /* Michael Somos, Sep 03 2013 */

(PARI) x='x+O('x^99); Vec(x*(2+3*x-2*x^2-x^3)/(1-6*x^2+x^4)) \\ Altug Alkan, Mar 27 2016

CROSSREFS

Cf. A001541, A001653, A010914, A084068.

Sequence in context: A060744 A213391 A192798 * A066915 A070253 A147673

Adjacent sequences:  A143606 A143607 A143608 * A143610 A143611 A143612

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling, Aug 27 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 22 08:57 EST 2017. Contains 295076 sequences.