login
A143570
E.g.f. satisfies A(x) = exp(x*A(x^6/6!)).
2
1, 1, 1, 1, 1, 1, 1, 8, 57, 253, 841, 2311, 5545, 18019, 192193, 1936936, 13533521, 71607537, 308979217, 1195354525, 8070684721, 113661781381, 1368278263969, 12100291273456, 83294670263113, 474179436692501, 2787857745272601, 32561274444909211
OFFSET
0,8
LINKS
FORMULA
a(0) = 1; a(n) = (n-1)! * Sum_{k=0..floor((n-1)/6)} (6*k+1) * a(k) * a(n-1-6*k) / (720^k * k! * (n-1-6*k)!). - Seiichi Manyama, Nov 29 2023
MAPLE
A:= proc(n) option remember; if n<=0 then 1 else unapply (convert (series (exp (x*A(n-6)(x^6/720)), x, n+1), polynom), x) fi end: a:= n-> coeff (A(n)(x), x, n)*n!: seq(a(n), n=0..33);
MATHEMATICA
A[n_] := A[n] = If[n <= 0, 1&, Function[Normal[Series[Exp[y*A[n-2][y^6/6!]], {y, 0, n+1}] /. y -> #]]]; a[n_] := Coefficient[A[n][x], x, n]*n!; Table[a[n], {n, 0, 33}] (* Jean-François Alcover, Feb 13 2014, after Maple *)
CROSSREFS
6th column of A143565.
Sequence in context: A316922 A317040 A317694 * A365303 A296721 A283693
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Aug 24 2008
STATUS
approved