This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A143522 a(n) = n-fold Dumont operator of x evaluated at x=1, y=1, z=2. 1
 1, 2, 5, 18, 93, 618, 4905, 45162, 474777, 5618322, 73895085, 1069104258, 16873062453, 288485314938, 5311769483025, 104789840677722, 2205098925335217, 49302142664941602, 1167150946521879765 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS The Dumont operator: D = y*z*dx + z*x*dy + x*y*dz is used to generate expansions for the Jacobi elliptic functions sn, cn and dn. LINKS FORMULA E.g.f.: 3/(3*cosh(sqrt(3)*x) - 2*sqrt(3)*sinh(sqrt(3)*x)). E.g.f.: 2*(3*cosh(sqrt(3)*x) + 2*sqrt(3)*sinh(sqrt(3)*x))/(7 - cosh(2*sqrt(3)*x)). EXAMPLE Given the Dumont operator: D = y*z*dx + z*x*dy + x*y*dz, illustrate a(n) = D^n x evaluated at x=1, y=1, z=2: D^0 x = x --> a(0) = 1; D^1 x = y*z --> a(1) = 2; D^2 x = (y^2 + z^2)*x --> a(2) = 5; D^3 x = 4*z*y*x^2 + (z*y^3 + z^3*y) --> a(3) = 18; D^4 x = (4*y^2 + 4*z^2)*x^3 + (y^4 + 14*z^2*y^2 + z^4)*x --> a(4) = 93; D^5 x = 16*z*y*x^4 + (44*z*y^3 + 44*z^3*y)*x^2 + (z*y^5 + 14*z^3*y^3 + z^5*y) --> a(5) = 618. PROG (PARI) {a(n)=local(F=x); if(n>=0, for(i=1, n, F=y*z*deriv(F, x)+z*x*deriv(F, y)+x*y*deriv(F, z))); subst(subst(subst(F, x, 1), y, 1), z, 2)} CROSSREFS Cf. A143523. Sequence in context: A099556 A057864 A032273 * A217389 A123310 A058119 Adjacent sequences:  A143519 A143520 A143521 * A143523 A143524 A143525 KEYWORD nonn AUTHOR Paul D. Hanna, Aug 22 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Puzzles | Hot | Classics
Recent Additions | More pages | Superseeker | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .