OFFSET
0,3
FORMULA
Given g.f. A(x), let G(x) be defined by G(x*A(x)^2) = x, then
(1) G(x) = x/(1 + A(x)^2*G(x))^2,
(2) A(G(x)) = 1 + A(x)^2*G(x).
EXAMPLE
G.f. A(x) = 1 + x + 2*x^2 + 9*x^3 + 52*x^4 + 372*x^5 + 3058*x^6 +...
A(x)^2 = 1 + 2*x + 5*x^2 + 22*x^3 + 126*x^4 + 884*x^5 + 7149*x^6 +...
A(x*A(x)^2) = 1 + x + 4*x^2 + 22*x^3 + 156*x^4 + 1285*x^5 + 11886*x^6 +...
A(x*A(x)^2)^2 = 1 + 2*x + 9*x^2 + 52*x^3 + 372*x^4 + 3058*x^5 +...
Define G(x) by G(x*A(x)^2) = x, then
G(x) = x - 2*x^2 + 3*x^3 - 12*x^4 + 17*x^5 - 198*x^6 - 345*x^7 +...
such that G(x) = x/(1 + A(x)^2*G(x))^2.
PROG
(PARI) {a(n)=local(A=1+x+x*O(x^n)); for(i=0, n, A=1+x*subst(A^2, x, x*A^2)); polcoeff(A, n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 21 2008
STATUS
approved