This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A143505 Triangle of coefficients of the polynomials x^(n - 1)*A(n,x + 1/x), where A(n,x) are the Eulerian polynomials of A008292. 2
 1, 1, 1, 1, 1, 4, 3, 4, 1, 1, 11, 14, 23, 14, 11, 1, 1, 26, 70, 104, 139, 104, 70, 26, 1, 1, 57, 307, 530, 973, 947, 973, 530, 307, 57, 1, 1, 120, 1197, 3016, 5970, 8568, 9549, 8568, 5970, 3016, 1197, 120, 1, 1, 247, 4300, 17101, 37105, 70474, 90069, 107241, 90069 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,6 COMMENTS Row sums yield A000670 (without leading 1). LINKS Eric Weisstein's World of Mathematics, Polylogarithm FORMULA Row n is generated by the polynomial (1 - x - 1/x)^(n + 1)*x^(n - 1)*Li(-n, x + 1/x)/(x + 1/x), where Li(n, z) is the polylogarithm function. E.g.f.: (exp(x*y) - exp((1 + x^2)*y))/(x*exp((1 + x^2)*y) - (1 + x^2)*exp(x*y)). - Franck Maminirina Ramaharo, Oct 25 2018 EXAMPLE Triangle begins:    1;    1,  1,   1;    1,  4,   3,   4,   1;    1, 11,  14,  23,  14,  11,   1;    1, 26,  70, 104, 139, 104,  70,  26,   1;    1, 57, 307, 530, 973, 947, 973, 530, 307, 57, 1;     ... reformatted. - Franck Maminirina Ramaharo, Oct 25 2018 MATHEMATICA Table[CoefficientList[FullSimplify[ExpandAll[(1 - x - 1/x)^(n + 1)*x^(n - 1)*PolyLog[-n, x + 1/x]/(x + 1/x)]], x], {n, 1, 10}]//Flatten CROSSREFS Compare with A141720. Cf. A008292. Cf. A143506, A143507. Sequence in context: A070511 A066340 A195597 * A245727 A280822 A284517 Adjacent sequences:  A143502 A143503 A143504 * A143506 A143507 A143508 KEYWORD nonn,tabf AUTHOR Roger L. Bagula and Gary W. Adamson, Oct 25 2008 EXTENSIONS Edited and new name by Franck Maminirina Ramaharo, Oct 25 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 18 08:08 EDT 2019. Contains 328146 sequences. (Running on oeis4.)