login
A143487
"Fourth down, Extream [sic] between the two farthest Bells from it" in bell-ringing is a sequence of permutations p_1=(1,2,3,4), p_2=(1,2,4,3), .. which runs through all permutations of {1,2,3,4} with period 24; sequence gives number in position 4 of n-th permutation.
5
4, 3, 3, 3, 2, 2, 2, 4, 4, 2, 2, 2, 1, 1, 1, 4, 4, 1, 1, 1, 3, 3, 3, 4, 4, 3, 3, 3, 2, 2, 2, 4, 4, 2, 2, 2, 1, 1, 1, 4, 4, 1, 1, 1, 3, 3, 3, 4, 4, 3, 3, 3, 2, 2, 2, 4, 4, 2, 2, 2, 1, 1, 1, 4, 4, 1, 1, 1, 3, 3, 3, 4, 4, 3, 3, 3, 2, 2, 2, 4, 4, 2, 2, 2, 1, 1, 1, 4, 4, 1, 1, 1, 3, 3, 3, 4, 4, 3, 3, 3, 2, 2, 2, 4, 4
OFFSET
1,1
COMMENTS
Start with (1,2,3,4), i.e. the first permutation of {1,2,3} followed by 4; then for each next permutation, transpose 4 one to the left; if at position 1, replace {1,2,3} recursively by the next permutation of these numbers. Thereafter, for each next permutation, transpose 4 to the right. And so on.
LINKS
Richard Duckworth and Fabian Stedman, Tintinnalogia, or, the Art of Ringing, (1671). Released by Project Gutenberg, 2006.
Index entries for linear recurrences with constant coefficients, signature (2,-2,1,0,0,-1,2,-2,1,0,0,-1,2,-2,1,0,0,-1,2,-2,1).
FORMULA
Period 24.
From Chai Wah Wu, Jan 15 2020: (Start)
a(n) = 2*a(n-1) - 2*a(n-2) + a(n-3) - a(n-6) + 2*a(n-7) - 2*a(n-8) + a(n-9) - a(n-12) + 2*a(n-13) - 2*a(n-14) + a(n-15) - a(n-18) + 2*a(n-19) - 2*a(n-20) + a(n-21) for n > 21.
G.f.: x*(-4*x^20 + 5*x^19 - 5*x^18 + x^17 + 2*x^16 - 2*x^15 - 2*x^14 + 2*x^13 - 2*x^12 + x^11 - x^10 + x^9 - 3*x^8 + 3*x^7 - 3*x^6 - x^5 + x^4 + x^3 - 5*x^2 + 5*x - 4)/((x - 1)*(x^2 + 1)*(x^4 + 1)*(x^2 - x + 1)*(x^4 - x^2 + 1)*(x^8 - x^4 + 1)). (End)
MAPLE
ring:= proc(k::nonnegint) local p, i, left, l, nf, ini; if k<=1 then proc() [1$k] end else ini := proc() p:= ring(k-1); i:= k; left:= true; l:= p(); nf:= k! end; ini(); proc() local ll; ll:= [seq(l[t], t=1..(i-1)), k, seq(l[t], t=i..(k-1))]; if left then if i>1 then i:= i-1 else left:= false; l:=p() fi else if i<k then i:= i+1 else left:= true; l:=p() fi fi; nf:= nf-1; if nf = 0 then ini() fi; ll end fi end: bell := proc(k) option remember; local p; p:= ring(k); [seq(p(), i=1..k!)] end: a := n-> bell(4)[modp(n-1, 24)+1][4]: seq (a(n), n=1..121);
MATHEMATICA
LinearRecurrence[{2, -2, 1, 0, 0, -1, 2, -2, 1, 0, 0, -1, 2, -2, 1, 0, 0, -1, 2, -2, 1}, {4, 3, 3, 3, 2, 2, 2, 4, 4, 2, 2, 2, 1, 1, 1, 4, 4, 1, 1, 1, 3}, 105] (* Jean-François Alcover, Mar 15 2021 *)
KEYWORD
nonn,easy
AUTHOR
Alois P. Heinz, Aug 19 2008
STATUS
approved