login
A143437
G.f. satisfies: A(x) = 1 + x*A(x*A(x))^5.
2
1, 1, 5, 40, 405, 4745, 61551, 862050, 12831835, 200874055, 3282575310, 55693595381, 977058059380, 17668078651755, 328497282637520, 6267311264123850, 122498870023756800, 2449635783413544555
OFFSET
0,3
FORMULA
G.f. satisfies: x - G(x) = G(x)^2*A(x)^5 where G(x*A(x)) = x.
EXAMPLE
G.f.: A(x) = 1 + x + 5*x^2 + 40*x^3 + 405*x^4 + 4745*x^5 + 61551*x^6 +...
A(x*A(x)) = 1 + x + 6*x^2 + 55*x^3 + 620*x^4 + 7940*x^5 + 111166*x^6 +...
A(x*A(x))^5 = 1 + 5*x + 40*x^2 + 405*x^3 + 4745*x^4 + 61551*x^5 +...
PROG
(PARI) {a(n)=local(A=1+x+x*O(x^n)); for(i=0, n, A=1+x*subst(A^5, x, x*A)); polcoeff(A, n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 14 2008
STATUS
approved