OFFSET
0,3
FORMULA
G.f. satisfies: x - G(x) = G(x)^2*A(x)^3 where G(x*A) = x.
G.f. satisfies: A(x) = exp( Sum_{n>=0} [d^n/dx^n x^(2n+1)*A(x)^(3*n+3)]*A(x)^(-2n-2)/(n+1)! ). [Paul D. Hanna, Dec 18 2010]
EXAMPLE
G.f.: A(x) = 1 + x + 3*x^2 + 15*x^3 + 97*x^4 + 738*x^5 + 6297*x^6 +...
A(x*A(x)) = 1 + x + 4*x^2 + 24*x^3 + 178*x^4 + 1511*x^5 + 14130*x^6 +...
A(x*A(x))^3 = 1 + 3*x + 15*x^2 + 97*x^3 + 738*x^4 + 6297*x^5 +...
Logarithmic series:
log(A(x)) = x*A(x) + [d/dx x^3*A(x)^6]*A(x)^(-4)/2! + [d^2/dx^2 x^5*A(x)^9]*A(x)^(-6)/3! + [d^3/dx^3 x^7*A(x)^12]*A(x)^(-8)/4! +...
PROG
(PARI) {a(n)=local(A=1+x+x*O(x^n)); for(i=0, n, A=1+x*subst(A^3, x, x*A)); polcoeff(A, n)}
(PARI) /* n-th Derivative: */
{Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
/* G.f.: [Paul D. Hanna, Dec 18 2010] */
{a(n)=local(A=1+x+x*O(x^n)); for(i=1, n,
A=exp(sum(m=0, n, Dx(m, x^(2*m+1)*A^(3*m+3))*A^(-2*m-2)/(m+1)!)+x*O(x^n))); polcoeff(A, n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 14 2008
STATUS
approved