This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A143434 Expansion of f(x, -x^3) in powers of x where f(,) is Ramanujan's two variable theta function. 1
 1, 1, 0, -1, 0, 0, -1, 0, 0, 0, -1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 LINKS FORMULA Euler transform of period 16 sequence [ 1, -1, -1, 1, -1, 0, 1, -2, 1, 0, -1, 1, -1, -1, 1, -1, ...]. G.f.: Sum_{k>=0} (-1)^floor((k + 2) / 4) * x^(k * (k+1) / 2). a(n) = (-1)^n * A143433(n). EXAMPLE 1 + x - x^3 - x^6 - x^10 - x^15 + x^21 + x^28 + x^36 + x^45 - x^55 - x^66 + ... q + q^9 - q^25 - q^49 - q^81 - q^121 + q^169 + q^225 + q^289 + q^361 + ... MATHEMATICA a[ n_] := If[ n < 0, 0, SeriesCoefficient[ (Series[ EllipticTheta[ 3, Log[y] / (2 I), I x^2], {x, 0, n + Floor@Sqrt[n]}] // Normal // TrigToExp) /. {y -> I x}, {x, 0, n}]] PROG (PARI) {a(n) = if( n<0, 0, if( issquare( 8*n + 1, &n), n = n\2; (-1)^((n + 2) \ 4), 0))} (PARI) {a(n) = local(A); if( n<0, 0, polcoeff( prod( k=1, n, (1 - x^k)^( [1, -1, 1, 1, -1, 1, 0, -1, 2, -1, 0, 1, -1, 1, 1, -1] [k%16 + 1]), 1 + x * O(x^n)), n))} CROSSREFS Cf. A143433. Sequence in context: A106459 A143433 * A197870 A033806 A033802 A033800 Adjacent sequences:  A143431 A143432 A143433 * A143435 A143436 A143437 KEYWORD sign AUTHOR Michael Somos, Aug 14 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Puzzles | Hot | Classics
Recent Additions | More pages | Superseeker | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .