login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A143402 Expansion of x^k/Product_{t=k..2k} (1-tx) for k=7. 2
0, 0, 0, 0, 0, 0, 0, 1, 84, 3990, 141120, 4138827, 106469748, 2484848080, 53791898160, 1096912870053, 21307466872692, 397605494092170, 7173885616672320, 125794299357058879, 2152559266567924116, 36065247772657686660, 593280221500152370800 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,9

COMMENTS

a(n) is also the number of forests of 7 labeled rooted trees of height at most 1, with n labels, where any root may contain >= 1 labels.

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..300

Index entries for sequences related to rooted trees

FORMULA

G.f.: x^7/((1-7x)(1-8x)(1-9x)(1-10x)(1-11x)(1-12x)(1-13x)(1-14x)).

E.g.f.: exp(7*x)*((exp(x)-1)^7)/7!.

MAPLE

a:= proc(k::nonnegint) local M; M:= Matrix(k+1, (i, j)-> if (i=j-1) then 1 elif j=1 then [seq(-1* coeff(product(1-t*x, t=k..2*k), x, u), u=1..k+1)][i] else 0 fi); p-> (M^p)[1, k+1] end(7): seq(a(n), n=0..30);

CROSSREFS

7th column of A143395.

Sequence in context: A035806 A017747 A223959 * A004379 A075906 A075909

Adjacent sequences:  A143399 A143400 A143401 * A143403 A143404 A143405

KEYWORD

nonn

AUTHOR

Alois P. Heinz, Aug 12 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 5 13:49 EST 2016. Contains 278768 sequences.