login
This site is supported by donations to The OEIS Foundation.

 

Logo

Invitation: celebrating 50 years of OEIS, 250000 sequences, and Sloane's 75th, there will be a conference at DIMACS, Rutgers, Oct 9-10 2014.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A143402 Expansion of x^k/Prod_{t=k..2k}(1-tx) for k=7. 2
0, 0, 0, 0, 0, 0, 0, 1, 84, 3990, 141120, 4138827, 106469748, 2484848080, 53791898160, 1096912870053, 21307466872692, 397605494092170, 7173885616672320, 125794299357058879, 2152559266567924116, 36065247772657686660, 593280221500152370800 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,9

COMMENTS

a(n) is also the number of forests of 7 labeled rooted trees of height at most 1, with n labels, where any root may contain >= 1 labels.

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..300

Index entries for sequences related to rooted trees

FORMULA

G.f.: x^7/((1-7x)(1-8x)(1-9x)(1-10x)(1-11x)(1-12x)(1-13x)(1-14x)).

MAPLE

a := proc(k::nonnegint) local M; M := Matrix(k+1, (i, j)-> if (i=j-1) then 1 elif j=1 then [seq(-1* coeff (product (1-t*x, t=k..2*k), x, u), u=1..k+1)][i] else 0 fi); p-> (M^p)[1, k+1] end(7): seq (a(n), n=0..30);

CROSSREFS

7th column of A143395.

Sequence in context: A035806 A017747 A223959 * A004379 A075906 A075909

Adjacent sequences:  A143399 A143400 A143401 * A143403 A143404 A143405

KEYWORD

nonn

AUTHOR

Alois P. Heinz, Aug 12 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified September 1 17:06 EDT 2014. Contains 246309 sequences.