The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A143400 Expansion of x^k/Product_{t=k..2k} (1-tx) for k=5. 2
 0, 0, 0, 0, 0, 1, 45, 1190, 24150, 416451, 6427575, 91549480, 1227283200, 15695180501, 193333245105, 2310273772170, 26927270656650, 307413790470151, 3449088814306635, 38132767214613260, 416342920938136500, 4497187699884973401, 48129773048982636165 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,7 COMMENTS a(n) is also the number of forests of 5 labeled rooted trees of height at most 1 with n labels, where any root may contain >= 1 labels. LINKS Alois P. Heinz, Table of n, a(n) for n = 0..300 Index entries for linear recurrences with constant coefficients, signature (45, -835, 8175, -44524, 127860, -151200). FORMULA G.f.: x^5/((1-5x)(1-6x)(1-7x)(1-8x)(1-9x)(1-10x)). E.g.f.: exp(5*x)*((exp(x)-1)^5)/5!. MAPLE a := proc(k::nonnegint) local M; M := Matrix(k+1, (i, j)-> if (i=j-1) then 1 elif j=1 then [seq(-1* coeff(product(1-t*x, t=k..2*k), x, u), u=1..k+1)][i] else 0 fi); p-> (M^p)[1, k+1] end(5); seq(a(n), n=0..30); MATHEMATICA CoefficientList[Series[x^5/((1-5x)(1-6x)(1-7x)(1-8x)(1-9x)(1-10x)), {x, 0, 30}], x] (* or *) LinearRecurrence[{45, -835, 8175, -44524, 127860, -151200}, {0, 0, 0, 0, 0, 1}, 30] (* Harvey P. Dale, Aug 30 2018 *) CROSSREFS 5th column of A143395. Sequence in context: A215769 A320822 A229796 * A226981 A173000 A004350 Adjacent sequences:  A143397 A143398 A143399 * A143401 A143402 A143403 KEYWORD nonn AUTHOR Alois P. Heinz, Aug 12 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 11 06:25 EDT 2020. Contains 336422 sequences. (Running on oeis4.)