The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A143389 Coefficient Expansion sequence of a Weaver Morse Code polynomial (using Cyclotomic prime base dot, dash, letter space and word space symbols): p(x) = -5 - 10 x - 12 x^2 - 10 x^3 - 7 x^4 - 3 x^5 + 5 x^7 + 8 x^8 + 9 x^9 + 8 x^10 + 6 x^11 + 3 x^12 + x^13. 0
 1, -3, 3, 1, -6, 7, -1, -9, 11, 7, -34, 32, 23, -95, 99, 27, -219, 250, 76, -571, 619, 241, -1517, 1684, 511, -3927, 4500, 1205, -10120, 11628, 3041, -26200, 30648, 7148, -68161, 80975, 16901, -176402, 212169, 39547, -456228, 557737, 91154, -1183066, 1466383 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 REFERENCES Claude Shannon and Warren Weaver, A Mathematical Theory of Communication, University of Illinois Press, Chicago, 1963, pp. 37-38. LINKS FORMULA p(x) = -5 - 10 x - 12 x^2 - 10 x^3 - 7 x^4 - 3 x^5 + 5 x^7 + 8 x^8 + 9 x^9 + 8 x^10 + 6 x^11 + 3 x^12 + x^13; a(n) = Coefficient_expansion(x^13*p(1/x)). G.f.: -1/(5*x^13+10*x^12+12*x^11+10*x^10+7*x^9+3*x^8-5*x^6-8*x^5 -9*x^4 -8*x^3-6*x^2-3*x-1). EXAMPLE Weaver determinant: A0 = Cyclotomic[2, x] B0 = Cyclotomic[5, x] C0 = Cyclotomic[3, x] D0 = Cyclotomic[7, x] Expand[FullSimplify[ExpandAll[((1 + x) (1 + x + x^2) ( 1 + x + x^2 + x^3 + x^4) ( 1 + x + x^2 + x^3 + x^4 + x^5 + x^6))*Det[{{-1, (1/B0 + 1/A0)}, {(1/ D0 + 1/C0), 1/A0 + 1/B0 - 1}}]]]] MATHEMATICA p[x_] = -5 - 10 x - 12 x^2 - 10 x^3 - 7 x^4 - 3 x^5 + 5 x^7 + 8 x^8 + 9 x^9 + 8 x^10 + 6 x^11 + 3 x^12 + x^13; q[x_] = ExpandAll[x^13*p[1/x]]; a = Table[SeriesCoefficient[Series[1/q[x], {x, 0, 30}], n], {n, 0, 30}] CROSSREFS Sequence in context: A010468 A082009 A110640 * A219218 A208524 A094040 Adjacent sequences:  A143386 A143387 A143388 * A143390 A143391 A143392 KEYWORD uned,sign AUTHOR Roger L. Bagula and Gary W. Adamson, Oct 22 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 16 10:22 EDT 2021. Contains 343036 sequences. (Running on oeis4.)