%I #18 Feb 09 2021 02:34:40
%S 1,0,1,0,2,0,3,1,6,3,11,7,20,15,37,32,70,68,134,141,257,288,495,583,
%T 959,1175,1867,2358,3646,4714,7136,9397,13994,18695,27489,37138,54068,
%U 73687,106450,146066,209740,289328,413506,572784,815628,1133455,1609405
%N Expansion of x/(1 -x^2 -x^4 -x^7 -x^8 -x^9 -x^10).
%D Claude Shannon and Warren Weaver, A Mathematical Theory of Communication, University of Illinois Press, Chicago, 1963, pages 37 - 38.
%H G. C. Greubel, <a href="/A143351/b143351.txt">Table of n, a(n) for n = 1..1000</a>
%H <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (0,1,0,1,0,0,1,1,1,1).
%F a(n) = a(n-2) +a(n-4) +a(n-7) +a(n-8) +a(n-9) +a(n-10).
%t Rest@CoefficientList[Series[x/(1-x^2-x^4-x^7-x^8-x^9-x^10), {x,0,60}], x] (* or *) LinearRecurrence[{0,1,0,1,0,0,1,1,1,1}, {1,0,1,0,2,0,3,1,6,3}, 60] (* _Harvey P. Dale_, Mar 05 2016 *)
%o (Sage)
%o def A143351_list(prec):
%o P.<x> = PowerSeriesRing(ZZ, prec)
%o return P( x/(1-x^2-x^4-x^7-x^8-x^9-x^10) ).list()
%o a=A143351_list(61); a[1:] # _G. C. Greubel_, Feb 08 2021
%o (Magma)
%o R<x>:=PowerSeriesRing(Rationals(), 60);
%o Coefficients(R!( x/(1-x^2-x^4-x^7-x^8-x^9-x^10) )); // _G. C. Greubel_, Feb 08 2021
%Y Cf. A122762, A143372, A143373, A143375.
%K nonn
%O 1,5
%A _Roger L. Bagula_ and _Gary W. Adamson_, Oct 22 2008
%E More terms from _Harvey P. Dale_, Mar 05 2016
%E Edited by _G. C. Greubel_, Feb 08 2021