The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A143348 a(n) = -(-1)^n times sum of divisors of n. 3

%I

%S 1,-3,4,-7,6,-12,8,-15,13,-18,12,-28,14,-24,24,-31,18,-39,20,-42,32,

%T -36,24,-60,31,-42,40,-56,30,-72,32,-63,48,-54,48,-91,38,-60,56,-90,

%U 42,-96,44,-84,78,-72,48,-124,57,-93,72,-98,54,-120,72,-120,80,-90,60,-168,62,-96,104,-127,84,-144,68,-126,96

%N a(n) = -(-1)^n times sum of divisors of n.

%H Indranil Ghosh, <a href="/A143348/b143348.txt">Table of n, a(n) for n = 1..10000</a>

%H László Tóth, <a href="https://arxiv.org/abs/1608.00795">Alternating sums concerning multiplicative arithmetic functions</a>, arXiv preprint arXiv:1608.00795 [math.NT], 2016.

%F a(n) is multiplicative with a(2^e) = 1 - 2^(e+1) if e > 0, a(p^e) = (p^(e+1) - 1) / (p - 1) if p > 2.

%F G.f.: Sum_{k>0} k * -(-x)^k / (1 - (-x)^k) = Sum_{k>0} -(-x)^k / (1 - (-x)^k)^2.

%F Dirichlet g.f.: zeta(s) * zeta(s-1) * (1 - 6 / 2^s + 4 / 4^s).

%e q - 3*q^2 + 4*q^3 - 7*q^4 + 6*q^5 - 12*q^6 + 8*q^7 - 15*q^8 + 13*q^9 + ...

%t Table[-(-1)^n*DivisorSigma[1, n], {n, 69}] (* _Michael De Vlieger_, Aug 19 2017 *)

%o (PARI) {a(n) = if( n<1, 0, -(-1)^n * sigma(n))}

%Y -(-1)^n * A000203(n) = a(n). A143337(n) = 24 * a(n) unless n=0.

%K sign,mult

%O 1,2

%A _Michael Somos_, Aug 09 2008

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 28 05:01 EST 2021. Contains 340490 sequences. (Running on oeis4.)