login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A143347 Decimal expansion of the paper-folding constant. 1
8, 5, 0, 7, 3, 6, 1, 8, 8, 2, 0, 1, 8, 6, 7, 2, 6, 0, 3, 6, 7, 7, 9, 7, 7, 6, 0, 5, 3, 2, 0, 6, 6, 6, 0, 4, 4, 1, 1, 3, 9, 9, 4, 9, 3, 0, 8, 2, 7, 1, 0, 6, 4, 7, 7, 2, 8, 1, 6, 8, 2, 6, 1, 0, 3, 1, 8, 3, 0, 1, 5, 8, 4, 5, 9, 3, 1, 9, 4, 4, 5, 3, 4, 8, 5, 4, 5, 9, 8, 2, 6, 4, 2, 1, 9, 3, 9, 2, 3, 9, 9, 6, 0, 9, 1 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

REFERENCES

Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, section 6.8.5 Paper Folding, pages 439-440.

LINKS

Table of n, a(n) for n=0..104.

Joerg Arndt, Matters Computational (The Fxtbook), p. 744.

Michel Mendès France and Alf van der Poorten, Arithmetic and Analytic Properties of Paper Folding Sequences, Bulletin of the Australian Mathematical Society, volume 24, issue 1, 1981, pages 123-131.

Eric Weisstein's World of Mathematics, Paper Folding Constant

Index entries for sequences obtained by enumerating foldings

Index entries for transcendental numbers

EXAMPLE

0.85073618820186726036...

MATHEMATICA

RealDigits[ N[ Sum[ 8^2^k/(2^2^(k + 2) - 1), {k, 0, Infinity}], 110]][[1]][[1 ;; 105]] (* Jean-François Alcover, Oct 26 2012 *)

PROG

(PARI) default(realprecision, 510);

c=sum(k=0, 10, 1.0/( 2^(2^k) * ( 1 - 1/(2^(2^(k+2))) ) ) )

/* Joerg Arndt, Aug 28 2011 */

CROSSREFS

Cf. A014577 (binary expansion).

Sequence in context: A146489 A230162 A197841 * A073448 A073745 A086730

Adjacent sequences:  A143344 A143345 A143346 * A143348 A143349 A143350

KEYWORD

nonn,cons

AUTHOR

Eric W. Weisstein, Aug 09 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 22 08:40 EST 2021. Contains 340360 sequences. (Running on oeis4.)