login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A143335 Expansion of (1 - 2*x^3 - x^4 - 2*x^5 - x^6 - x^7 - x^8 + 2*x^9)/(1 + x - x^3 - x^4 - x^5 - x^6 - x^7 + x^9 + x^10). 9
1, -1, 1, -2, 1, -2, 0, -1, -3, 2, -6, 1, -4, -3, -3, -5, -4, -7, -6, -9, -8, -14, -10, -18, -18, -20, -28, -27, -38, -39, -50, -57, -67, -79, -94, -109, -128, -154, -175, -213, -244, -292, -341, -400, -475, -553, -655, -768, -905, -1062, -1253, -1470, -1732 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

Shares the same 10th-order "Salem" linear recurrence with A029826, A173243 and A125950.

LINKS

Table of n, a(n) for n=0..52.

Index entries for linear recurrences with constant coefficients, signature (-1,0,1,1,1,1,1,0,-1,-1).

FORMULA

a(n) = -a(n-1) + a(n-3) + a(n-4) + a(n-5) + a(n-6) + a(n-7) - a(n-9) - a(n-10). - Franck Maminirina Ramaharo, Nov 02 2018

MATHEMATICA

LinearRecurrence[{-1, 0, 1, 1, 1, 1, 1, 0, -1, -1}, {1, -1, 1, -2,

1, -2, 0, -1, -3, 2}, 60] (* Franck Maminirina Ramaharo, Nov 02 2018 *)

PROG

(PARI) x='x+O('x^50); Vec((1-2*x^3-x^4-2*x^5-x^6-x^7-x^8+2*x^9)/(1+x - x^3-x^4-x^5-x^6-x^7+x^9+x^10)) \\ G. C. Greubel, Nov 03 2018

(MAGMA) m:=50; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!((1- 2*x^3-x^4-2*x^5-x^6-x^7-x^8+2*x^9)/(1+x - x^3-x^4-x^5-x^6-x^7+x^9 +x^10))); // G. C. Greubel, Nov 03 2018

CROSSREFS

Cf. A029826, A070178, A087612, A125950.

Cf. A107479, A107480, A109538, A109543, A109544, A114749, A125950, A130844, A147851.

Sequence in context: A190491 A143352 A127170 * A099505 A156837 A255935

Adjacent sequences:  A143332 A143333 A143334 * A143336 A143337 A143338

KEYWORD

sign,easy

AUTHOR

Roger L. Bagula and Gary W. Adamson, Oct 22 2008

EXTENSIONS

Edited by Assoc. Eds. of the OEIS - Jun 30 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 21 09:15 EDT 2019. Contains 323441 sequences. (Running on oeis4.)