This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A143334 Only odd and even version of Pascal's triangle sequence: t(n,m)=If[m*(n - m) == 0, 1, Mod[Binomial[n, m], 2]*Prime[n] + (1 - Mod[Binomial[n, m], 2])*(Prime[n] + 1)]. 0

%I

%S 1,1,1,1,4,1,1,5,5,1,1,8,8,8,1,1,11,12,12,11,1,1,14,13,14,13,14,1,1,

%T 17,17,17,17,17,17,1,1,20,20,20,20,20,20,20,1,1,23,24,24,24,24,24,24,

%U 23,1,1,30,29,30,30,30,30,30,29,30,1

%N Only odd and even version of Pascal's triangle sequence: t(n,m)=If[m*(n - m) == 0, 1, Mod[Binomial[n, m], 2]*Prime[n] + (1 - Mod[Binomial[n, m], 2])*(Prime[n] + 1)].

%C Row sums are:{1, 2, 6, 12, 26, 48, 70, 104, 142, 192, 270}.

%F t(n,m)=If[m*(n - m) == 0, 1, Mod[Binomial[n, m], 2]*Prime[n] + (1 - Mod[Binomial[n, m], 2])*(Prime[n] + 1)].

%e {1},

%e {1, 1},

%e {1, 4, 1},

%e {1, 5, 5, 1},

%e {1, 8, 8, 8, 1},

%e {1, 11, 12, 12, 11, 1},

%e {1, 14, 13, 14, 13, 14, 1},

%e {1, 17, 17, 17, 17, 17, 17, 1},

%e {1, 20, 20, 20, 20, 20, 20, 20, 1},

%e {1, 23, 24, 24, 24, 24, 24, 24, 23, 1},

%e {1, 30, 29, 30, 30, 30, 30, 30, 29, 30, 1}

%t t[n_, m_] = If[m*(n - m) == 0,1, Mod[Binomial[n, m], 2]*Prime[n] + (1 - Mod[Binomial[n, m], 2])*(Prime[n] + 1)]; Table[Table[t[n, m], {m, 0, n}], {n, 0, 10}]; Flatten[%]

%K nonn,uned

%O 1,5

%A _Roger L. Bagula_ and _Gary W. Adamson_, Oct 21 2008

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 15 22:19 EDT 2019. Contains 324145 sequences. (Running on oeis4.)