login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A143323 Expansion of eta(q^2)^4 * eta(q^5) * eta(q^20)^2 / ( eta(q) * eta(q^4)^2 * eta(q^10)^2 ) in powers of q. 1
1, 1, -2, -1, 1, -2, -2, 1, 3, 1, 0, 2, 0, -2, -2, -1, 0, 3, 0, -1, 4, 0, -2, -2, 1, 0, -4, 2, 2, -2, 0, 1, 0, 0, -2, -3, 0, 0, 0, 1, 2, 4, -2, 0, 3, -2, -2, 2, 3, 1, 0, 0, 0, -4, 0, -2, 0, 2, 0, 2, 2, 0, -6, -1, 0, 0, -2, 0, 4, -2, 0, 3, 0, 0, -2, 0, 0, 0, 0, -1, 5, 2, -2, -4, 0, -2, -4, 0, 2, 3, 0, 2, 0, -2, 0, -2, 0, 3, 0, -1, 2, 0, -2, 0, 4 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

REFERENCES

L.-C. Shen, On the additive formulas of the theta functions and a collection of Lambert series pertaining to the modular equations of degree 5. Trans. Amer. Math. Soc. 345 (1994), no. 1, 323-345. See p. 338, Eq. (3.22), p. 342, Eq. (3.41).

LINKS

Table of n, a(n) for n=1..105.

M. Somos, Introduction to Ramanujan theta functions

Eric Weisstein's World of Mathematics, Ramanujan Theta Functions

FORMULA

Expansion of q * phi(-q^2) * chi(q) * psi(q^10) * chi(-q^5) in powers of q where phi(), psi(), chi() are Ramanujan theta functions.

Expansion of q * phi(-q^2)^2 * psi(-q^5)^2 / (f(-q) * f(-q^5)) in powers of q where phi(), psi(), f() are Ramanujan theta functions. - Michael Somos, Apr 07 2015

Euler transform of period 20 sequence [ 1, -3, 1, -1, 0, -3, 1, -1, 1, -2, 1, -1, 1, -3, 0, -1, 1, -3, 1, -2, ...].

Multiplicative with a(2^e) = -(-1)^e unless e=0, a(p^e) = 1 if p=5, a(p^e) = (1+(-1)^e)/2 if p == 11, 13, 17, 19 (mod 20), a(p^e) = e+1 if p == 1, 9 (mod 20), a(p^e) = (e+1)(-1)^e if p == 3, 7 (mod 20).

G.f. is a period 1 Fourier series which satisfies f(-1 / (20 t)) = 20^(1/2) (t/i) g(t) where q = exp(2 Pi i t) and g(t) is the g.f. for A129391.

G.f.: Sum_{k>0} -(-1)^k F(x^(2*k - 1)) where F(x) = x * (1 + x) * (1 - x^2) / (1 + x^5).

G.f.: x * Product_{k>0} (1 - x^k) * (1 + x^(2*k-1))^2 * (1 - x^(5*k)) * ( 1 + x^(10*k))^2.

a(n) = -(-1)^n * A111494(n).

EXAMPLE

G.f. = q + q^2 - 2*q^3 - q^4 + q^5 - 2*q^6 - 2*q^7 + q^8 + 3*q^9 + q^10 + ...

MATHEMATICA

a[ n_] := SeriesCoefficient[ 2 q^(13/8) EllipticTheta[ 4, 0, q^2]^2 QPochhammer[ q^20]^2 / ( QPochhammer[ q] EllipticTheta[ 2, 0, q^(5/2)]), {q, 0, n}]; (* Michael Somos, Apr 07 2015 *)

PROG

(PARI) {a(n) = if( n<1, 0, (-1)^n * (qfrep([2, 1; 1, 3], n)[n] - qfrep([1, 0; 0, 5], n)[n] ))};

(PARI) {a(n) = local(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x^2 + A)^4 * eta(x^5 + A) * eta(x^20 + A)^2 / ( eta(x + A) * eta(x^4 + A)^2 * eta(x^10 + A)^2 ), n))};

CROSSREFS

Cf. A111494, A129391.

Sequence in context: A124233 A035170 A111949 * A086598 A211261 A074746

Adjacent sequences:  A143320 A143321 A143322 * A143324 A143325 A143326

KEYWORD

sign,mult

AUTHOR

Michael Somos, Aug 07 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 10 17:31 EST 2016. Contains 279005 sequences.