login
This site is supported by donations to The OEIS Foundation.

 

Logo

The OEIS is looking to hire part-time people to help edit core sequences, upload scanned documents, process citations, fix broken links, etc. - Neil Sloane, njasloane@gmail.com

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A143290 Number of binary words of length n containing at least one subword 10^{10}1 and no subwords 10^{i}1 with i<10. 2
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 17, 23, 31, 41, 53, 67, 83, 101, 121, 143, 168, 198, 236, 285, 348, 428, 528, 651, 800, 978, 1188, 1434, 1722, 2061, 2464, 2948, 3534, 4247, 5116, 6174, 7458, 9009, 10873, 13103, 15762, 18927 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,14

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (2,-1,0,0,0,0,0,0,0,0,1,0,-1,0,0,0,0,0,0,0,0,0,-1).

FORMULA

G.f.: x^12/((x^11+x-1)*(x^12+x-1)).

a(n) = A017905(n+21)-A017906(n+23).

a(n) = 2*a(n-1) -a(n-2) +a(n-11) -a(n-13) -a(n-23). - Vincenzo Librandi, Jun 05 2013

EXAMPLE

a(13)=2 because 2 binary words of length 13 have at least one subword 10^{10}1 and no subwords 10^{i}1 with i<10: 0100000000001, 1000000000010.

MAPLE

a:= n-> coeff(series(x^12/((x^11+x-1)*(x^12+x-1)), x, n+1), x, n):

seq(a(n), n=0..60);

MATHEMATICA

CoefficientList[Series[x^12 / ((x^11 + x - 1) (x^12 + x - 1)), {x, 0, 60}], x] (* Vincenzo Librandi, Jun 05 2013 *)

PROG

(MAGMA) [n le 12 select 0 else n le 23 select n-12 else 2*Self(n-1)-Self(n-2) +Self(n-11)-Self(n-13)-Self(n-23): n in [1..60]]; // Vincenzo Librandi, Jun 05 2013

CROSSREFS

Cf. A017905, A017906, 10th column of A143291.

Sequence in context: A107062 A178538 A017904 * A272038 A044961 A044823

Adjacent sequences:  A143287 A143288 A143289 * A143291 A143292 A143293

KEYWORD

nonn,easy

AUTHOR

Alois P. Heinz, Aug 04 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified May 26 13:04 EDT 2017. Contains 287095 sequences.