login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A143289 Number of binary words of length n containing at least one subword 10^{9}1 and no subwords 10^{i}1 with i<9. 2

%I

%S 0,0,0,0,0,0,0,0,0,0,0,1,2,3,4,5,6,7,8,9,10,12,16,22,30,40,52,66,82,

%T 100,120,143,171,207,254,315,393,491,612,759,935,1144,1392,1688,2045,

%U 2480,3014,3672,4483,5480,6700,8185,9984,12156,14774,17930,21740,26349,31936

%N Number of binary words of length n containing at least one subword 10^{9}1 and no subwords 10^{i}1 with i<9.

%H Vincenzo Librandi, <a href="/A143289/b143289.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1,0,0,0,0,0,0,0,1,0,-1,0,0,0,0,0,0,0,0,-1).

%F G.f.: x^11/((x^10+x-1)*(x^11+x-1)).

%F a(n) = A017904(n+19)-A017905(n+21).

%F a(n) = 2*a(n-1) -a(n-2) +a(n-10) -a(n-12) -a(n-21). - _Vincenzo Librandi_, Jun 05 2013

%e a(12)=2 because 2 binary words of length 12 have at least one subword 10^{9}1 and no subwords 10^{i}1 with i<9: 010000000001, 100000000010.

%p a:= n-> coeff(series(x^11/((x^10+x-1)*(x^11+x-1)), x, n+1), x, n):

%p seq(a(n), n=0..60);

%t CoefficientList[Series[x^11 / ((x^10 + x - 1) (x^11 + x - 1)), {x, 0, 60}], x] (* _Vincenzo Librandi_, Jun 05 2013 *)

%o (MAGMA) [n le 11 select 0 else n le 21 select n-11 else 2*Self(n-1)-Self(n-2) +Self(n-10)-Self(n-12)-Self(n-21): n in [1..60]]; // _Vincenzo Librandi_, Jun 05 2013

%Y Cf. A017904, A017905, 9th column of A143291.

%K nonn,easy

%O 0,13

%A _Alois P. Heinz_, Aug 04 2008

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 17 02:30 EST 2018. Contains 318192 sequences. (Running on oeis4.)