login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A143289 Number of binary words of length n containing at least one subword 10^{9}1 and no subwords 10^{i}1 with i<9. 2
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 16, 22, 30, 40, 52, 66, 82, 100, 120, 143, 171, 207, 254, 315, 393, 491, 612, 759, 935, 1144, 1392, 1688, 2045, 2480, 3014, 3672, 4483, 5480, 6700, 8185, 9984, 12156, 14774, 17930, 21740, 26349, 31936 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,13

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (2,-1,0,0,0,0,0,0,0,1,0,-1,0,0,0,0,0,0,0,0,-1).

FORMULA

G.f.: x^11/((x^10+x-1)*(x^11+x-1)).

a(n) = A017904(n+19)-A017905(n+21).

a(n) = 2*a(n-1) -a(n-2) +a(n-10) -a(n-12) -a(n-21). - Vincenzo Librandi, Jun 05 2013

EXAMPLE

a(12)=2 because 2 binary words of length 12 have at least one subword 10^{9}1 and no subwords 10^{i}1 with i<9: 010000000001, 100000000010.

MAPLE

a:= n-> coeff(series(x^11/((x^10+x-1)*(x^11+x-1)), x, n+1), x, n):

seq(a(n), n=0..60);

MATHEMATICA

CoefficientList[Series[x^11 / ((x^10 + x - 1) (x^11 + x - 1)), {x, 0, 60}], x] (* Vincenzo Librandi, Jun 05 2013 *)

PROG

(MAGMA) [n le 11 select 0 else n le 21 select n-11 else 2*Self(n-1)-Self(n-2) +Self(n-10)-Self(n-12)-Self(n-21): n in [1..60]]; // Vincenzo Librandi, Jun 05 2013

CROSSREFS

Cf. A017904, A017905, 9th column of A143291.

Sequence in context: A059765 A180479 A193456 * A064807 A235591 A007603

Adjacent sequences:  A143286 A143287 A143288 * A143290 A143291 A143292

KEYWORD

nonn,easy

AUTHOR

Alois P. Heinz, Aug 04 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 19 07:02 EST 2017. Contains 294915 sequences.