This site is supported by donations to The OEIS Foundation.

 Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A143288 Number of binary words of length n containing at least one subword 10^{8}1 and no subwords 10^{i}1 with i<8. 2
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 15, 21, 29, 39, 51, 65, 81, 99, 120, 146, 180, 225, 284, 360, 456, 575, 720, 895, 1106, 1362, 1676, 2065, 2550, 3156, 3912, 4851, 6011, 7437, 9184, 11321, 13936, 17141, 21077, 25919, 31881, 39222, 48254 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,12 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (2,-1,0,0,0,0,0,0,1,0,-1,0,0,0,0,0,0,0,-1). FORMULA G.f.: x^10/((x^9+x-1)*(x^10+x-1)). a(n) = A005711(n+7)-A017904(n+19). a(n) = 2a(n-1) - a(n-2) + a(n-9) - a(n-11) - a(n-19). - Charles R Greathouse IV, Jun 04 2013 EXAMPLE a(11)=2 because 2 binary words of length 11 have at least one subword 10^{8}1 and no subwords 10^{i}1 with i<8: 01000000001, 10000000010. MAPLE a:= n-> coeff(series(x^10/((x^9+x-1)*(x^10+x-1)), x, n+1), x, n): seq(a(n), n=0..70); MATHEMATICA CoefficientList[Series[x^10 / ((x^9 + x - 1) (x^10 + x - 1)), {x, 0, 60}], x] (* Vincenzo Librandi, Jun 04 2013 *) LinearRecurrence[{2, -1, 0, 0, 0, 0, 0, 0, 1, 0, -1, 0, 0, 0, 0, 0, 0, 0, -1}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, 60] (* Harvey P. Dale, Oct 12 2018 *) PROG (PARI) Vec(1/((x^9+x-1)(x^10+x-1))+O(x^99)) \\ Charles R Greathouse IV, Jun 04 2013 CROSSREFS Cf. A005711, A017904, 8th column of A143291. Sequence in context: A050761 A030721 A190296 * A001103 A265730 A304248 Adjacent sequences:  A143285 A143286 A143287 * A143289 A143290 A143291 KEYWORD nonn,easy AUTHOR Alois P. Heinz, Aug 04 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 10 17:32 EST 2018. Contains 318049 sequences. (Running on oeis4.)