login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A143286 Number of binary words of length n containing at least one subword 10^{6}1 and no subwords 10^{i}1 with i<6. 2

%I

%S 0,0,0,0,0,0,0,0,1,2,3,4,5,6,7,9,13,19,27,37,49,63,80,102,132,173,228,

%T 300,392,508,654,839,1076,1382,1778,2289,2945,3783,4850,6207,7934,

%U 10135,12943,16526,21095,26915,34320,43733,55692,70882,90174,114673,145778

%N Number of binary words of length n containing at least one subword 10^{6}1 and no subwords 10^{i}1 with i<6.

%H Vincenzo Librandi, <a href="/A143286/b143286.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_15">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1,0,0,0,0,1,0,-1,0,0,0,0,0,-1).

%F G.f.: x^8/((x^7+x-1)*(x^8+x-1)).

%F a(n) = A005709(n+6)-A005710(n+7).

%F a(n) = 2*a(n-1) - a(n-2) + a(n-7) - a(n-9) - a(n-15). - _Vincenzo Librandi_, Jun 05 2013

%e a(9)=2 because 2 binary words of length 9 have at least one subword 10^{6}1 and no subwords 10^{i}1 with i<6: 010000001, 100000010.

%p a:= n-> coeff(series(x^8/((x^7+x-1)*(x^8+x-1)), x, n+1), x, n):

%p seq(a(n), n=0..60);

%t CoefficientList[Series[x^8 / ((x^7 + x - 1) (x^8 + x - 1)), {x, 0, 60}], x] (* _Vincenzo Librandi_, Jun 04 2013 *)

%o (MAGMA) [n le 8 select 0 else n le 15 select n-8 else 2*Self(n-1)-Self(n-2) +Self(n-7)-Self(n-9)-Self(n-15): n in [1..60]]; // _Vincenzo Librandi_, Jun 05 2013

%Y Cf. A005709, A005710, 6th column of A143291.

%K nonn,easy

%O 0,10

%A _Alois P. Heinz_, Aug 04 2008

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 13 08:18 EDT 2022. Contains 356079 sequences. (Running on oeis4.)