login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A143136 E.g.f. satisfies: A(x) = x + sinh( A(x) )^2. 5
1, 2, 12, 128, 1920, 36992, 870912, 24232448, 777999360, 28309164032, 1151292628992, 51750540443648, 2547747292446720, 136336755956252672, 7879446478581399552, 489119124160488931328, 32456290094449950720000 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Radius of convergence is r = log(sqrt(2)+1)/2 - (sqrt(2)-1)/2 = 0.2335800...,

where A(r) = log(1+sqrt(2))/2 = arcsinh(1)/2 = 0.44068679...

LINKS

Alois P. Heinz, Table of n, a(n) for n = 1..150

FORMULA

E.g.f.: A(x) = Series_Reversion( x - sinh(x)^2 ).

E.g.f.: x + Sum_{n>=1} d^(n-1)/dx^(n-1) sinh(x)^(2*n)/n!.

E.g.f.: x*exp( Sum_{n>=1} d^(n-1)/dx^(n-1) (sinh(x)^(2*n)/x)/n! ).

E.g.f. derivative: A'(x) = 1/(1 - sinh(2*A(x))).

a(n) ~ 2^(n-5/4) * n^(n-1) / (exp(n) * (1-sqrt(2)+log(1+sqrt(2)))^(n-1/2)). - Vaclav Kotesovec, Jan 08 2014

EXAMPLE

A(x) = x + 2*x^2/2! + 12*x^3/3! + 128*x^4/4! + 1920*x^5/5! + ...

sinh(A(x)) = G(x) is the e.g.f. of A143137:

G(x) = x + 2*x^2/2! + 13*x^3/3! + 140*x^4/4! + 2101*x^5/5! + ...

Related expansions:

A(x) = x + sinh(x)^2 + d/dx sinh(x)^4/2! + d^2/dx^2 sinh(x)^6/3! + d^3/dx^3 sinh(x)^8/4! + ...

log(A(x)/x) = sinh(x)^2/x + d/dx (sinh(x)^4/x)/2! + d^2/dx^2 (sinh(x)^6/x)/3! + d^3/dx^3 (sinh(x)^8/x)/4! +...

MATHEMATICA

Rest[CoefficientList[InverseSeries[Series[x - Sinh[x]^2, {x, 0, 20}], x], x] * Range[0, 20]!] (* Vaclav Kotesovec, Jan 08 2014 *)

PROG

(PARI) {a(n)=n!*polcoeff(serreverse(x-sinh(x+x*O(x^n))^2), n)}

(PARI) {a(n)=local(A=x); for(i=0, n, A=x + sinh(A)^2); n!*polcoeff(A, n)}

(PARI) {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}

{a(n)=local(A=x); A=x+sum(m=1, n, Dx(m-1, sinh(x+x*O(x^n))^(2*m)/m!)); n!*polcoeff(A, n)}

(PARI) {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}

{a(n)=local(A=x+x^2+x*O(x^n)); A=x*exp(sum(m=1, n, Dx(m-1, sinh(x+x*O(x^n))^(2*m)/x/m!)+x*O(x^n))); n!*polcoeff(A, n)}

for(n=1, 25, print1(a(n), ", "))

CROSSREFS

Cf. A143134, A143137, A213643.

Sequence in context: A201470 A349268 A003712 * A214224 A214431 A227461

Adjacent sequences: A143133 A143134 A143135 * A143137 A143138 A143139

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Jul 27 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 29 18:13 EST 2022. Contains 358431 sequences. (Running on oeis4.)