

A143108


Let H(2,d) be the space of polynomials p(x,y) of two variables with nonnegative coefficients such that p(x,y)=1 whenever x + y = 1. a(n) is the number of different polynomials in H(2,d) with exactly n distinct monomials and of maximum degree minus 1, i.e., of degree 2n4.


2




OFFSET

1,3


LINKS

Table of n, a(n) for n=1..8.
J. P. D'Angelo, Simon Kos and Emily Riehl, A sharp bound for the degree of proper monomial mappings between balls, J. Geom. Anal., 13(4):581593, 2003.
J. P. D'Angelo and J. Lebl, Complexity results for CR mappings between spheres, arXiv:0708.3232 [math.CV], 2008.
J. P. D'Angelo and J. Lebl, Complexity results for CR mappings between spheres, Internat. J. Math. 20 (2009), no. 2, 149166.
J. Lebl and D. Lichtblau, Uniqueness of certain polynomials constant on a hyperplane, arXiv:0808.0284 [math.CV], 20082010.
J. Lebl and D. Lichtblau, Uniqueness of certain polynomials constant on a hyperplane, Linear Algebra Appl., 433 (2010), no. 4, 824837


FORMULA

Possibly can be computed from A143107 except for the third term, but this is not proved. Let b_n be elements of A143107, then a_n = 2 ( b_2 b_{n1} + b_3 b_{n2} + ... + b_{n1} b_2 ).


MATHEMATICA

See the paper by LeblLichtblau.


CROSSREFS

Cf. A143107, A143109.
Sequence in context: A200981 A266729 A103038 * A169790 A014009 A274220
Adjacent sequences: A143105 A143106 A143107 * A143109 A143110 A143111


KEYWORD

hard,nonn,more


AUTHOR

Jiri Lebl (jlebl(AT)math.uiuc.edu), Jul 25 2008


STATUS

approved



