login
A143063
Expansion of the product of a false theta function and a Ramanujan theta function in powers of x.
1
1, 0, 0, 2, 0, 0, 0, 2, 2, 0, 2, 2, 2, 0, 2, 4, 4, 2, 4, 6, 4, 4, 4, 8, 8, 6, 8, 12, 10, 10, 12, 16, 16, 14, 18, 22, 22, 20, 24, 30, 32, 30, 36, 42, 42, 42, 48, 56, 60, 58, 66, 76, 78, 80, 88, 102, 106, 108, 120, 134, 140, 144, 158, 178, 186, 192, 210, 232, 242, 252, 272, 300
OFFSET
0,4
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
REFERENCES
G. E. Andrews and B. C. Berndt, Ramanujan's lost notebook, Part I, Springer, New York, 2005, MR2135178 (2005m:11001) See p. 235, Entry 9.4.8
S. Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, p. 41, 14th equation.
LINKS
FORMULA
G.f.: (1 - x + x^2 - x^5 + x^7 - x^12 + x^15 - ...) * (1 + x) * (1 + x^3) * (1 + x^5) * (1 + x^7) * ... [Ramanujan]
G.f.: 1 + 2 * x^3 / (1 - x^4) + 2 * x^8 / ((1 - x^2) * (1 - x^8)) + 2 * x^15 / ((1 - x^2) * (1 - x^4) * (1 - x^12)) + 2 * x^24 / ((1 - x^2) * (1 - x^4) * (1 - x^6) * (1 - x^16)) + ... [Ramanujan]
a(n) = 2 * A027348(n) unless n=0. Convolution of A143062 and A000700.
EXAMPLE
G.f. = 1 + 2*x^3 + 2*x^7 + 2*x^8 + 2*x^10 + 2*x^11 + 2*x^12 + 2*x^14 + 4*x^15 + ...
PROG
(PARI) {a(n) = my(A, m); if( n<0, 0, A = x * O(x^n); polcoeff( sum(k=0, n, if( issquare( 24*k + 1, &m), (-1)^(m \ 3) * x^k ), A) / eta(x + A) * eta(x^2 + A)^2 / eta(x^4 + A), n))};
(PARI) {a(n) = if( n<0, 0, polcoeff( 1 + 2 * sum(k=1, sqrtint(n+1) - 1, x^(k^2 + 2*k) / (1 - x^(4*k)) / prod(j=1, k-1, 1 - x^(2*j), 1 + O(x^(n + 1 - k^2 - 2*k)))), n))};
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael Somos, Jul 21 2008
STATUS
approved